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Abstract

This paper examines how to detect, document, and prevent plagiarism in exams.
First, to identify and quantify plagiarism, we propose methods that compare similar-
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we document cheating in undergraduate exams. Under baseline monitoring, at least
7.7% of the row-wise neighbor pairs plagiarized. Pairs composed of academically
weaker students cheated more. Third, using a field experiment, we demonstrate that
close monitoring eliminated cheating. By contrast, signing an honesty declaration
doubled cheating relative to the control group. Complementary experiments sug-
gest that the declaration backfired because it weakened the social norm of academic
integrity.
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1 Introduction

Academic cheating is a wasteful illicit activity. It distorts the incentives for students to

invest in their human capital, undermines the validity and usefulness of certificates as

quality signals, and, hence, weakens the efficiency of the job-matching process (Spence,

1973). Due to these adverse effects, it is not only crucial to examine whether and how

much students cheat but also vital to study how educators can promote academic in-

tegrity. However, because students try to conceal it, academic cheating is difficult to

measure. Consequently, despite there being a long tradition of thinking about academic

integrity (Parr, 1936; Drake, 1941; Bowers, 1964; Parnther, 2020), our knowledge of the

incidence and nature of cheating is still incomplete.1 Moreover, the measurement issue

paired with missing exogenous variation has also prevented educators from thoroughly

studying which countermeasures against academic cheating work and why.

In this paper, we examine how to detect, document, and prevent plagiarism in ex-

ams. We offer three contributions. First, we introduce strategies to identify and quantify

plagiarism that compare similarities in multiple-choice answers of seat neighbors and

non-neighbors. Second, exploiting these methods, we comprehensively document cheat-

ing in undergraduate exams at a German university. Particularly, we demonstrate that

students copy answers from their seat neighbors, then we bound the amount of plagia-

rism, describe its spatial structure, and document the characteristics of the students who

cheat. Third, we use a field experiment to evaluate whether two of the most popular

countermeasures against academic cheating – close monitoring and the request to sign

an honesty declaration – can promote academic integrity.2 Because we implemented both

countermeasures in a single setting, we can directly compare the interventions’ effects.

Our evidence originates from written exams in introductory courses on economics

and business administration. As discussed subsequently, these exams not only offer an

environment that allows us to detect cheating but also one that enables us to conduct a

clean and well-powered experiment. Moreover, in the baseline situation without exper-

imental interventions, the students faced a setting with low levels of monitoring that is

representative of many academic environments.

1Most of the evidence comes from survey data and suggests that academic cheating is widespread. For
example, between 42% and 64% of participants stated that they had cheated in college at least once (Davis
and Ludvigson, 1995). Furthermore, at Duke University, 21% of the surveyed undergraduates admitted
to having cheated at least once a year (McCabe, 2005). Schab (1991) and Davis et al. (1992) provide
further evidence. However, due to social-desirability biases or because subjects may fail to understand the
principles of academic integrity (Power, 2009; Dee and Jacob, 2012), survey data can be problematic.

2Honesty declarations are widespread. For example, students frequently have to sign an honesty pledge
when submitting assignments, term papers, or theses. Also, the honor-code system implies a well-known
form of a pledge to academic integrity. According to the U.S. News & World Report 2019, the top 10 U.S. uni-
versities have an honor code or code of conduct that explicitly refers to academic integrity, and four out of
the ten require undergraduate students to sign or pledge adherence to this code.
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The ideal test for plagiarism would identify cheating by comparing the similarity in

the seat neighbors’ answers between a scenario in which students can cheat and a sce-

nario in which it is impossible to cheat. A greater number of similarities identified in

the scenario with cheating possibilities would indicate plagiarism. However, because the

counterfactual scenario without cheating possibilities is unobservable, in practice, such a

comparison is impossible. This complication sets the stage for our three-step approach

to identify plagiarism. First, before the exam, we randomly assigned students to seats.

Second, we approximate the similarities in the scenario without cheating possibilities

by studying the answers of pairs of examinees who were not sitting next to each other

(henceforth, counterfactual neighbors). Third, we compare the similarities in the answers

of actual and counterfactual neighbor pairs to identify plagiarism. Due to seat randomi-

zation, the only reason why the similarity in the answers of actual and counterfactual

pairs should differ is that the former could plagiarize from each other, while the latter

could not. Hence, a comparison between actual and counterfactual neighbors enables us

to identify plagiarism.

Exploiting this strategy, we comprehensively document plagiarism in undergraduate

exams. Several insights emerge from the comparison of actual and counterfactual neigh-

bors under weak baseline monitoring. First, the similarity in the answers of actual neigh-

bor pairs is significantly higher than that in the answers of counterfactual neighbors. We

conclude that the examinees plagiarized, even though they faced a no-cheating rule that

the proctors announced before the exam. Second, we provide evidence on the spatial

structure of cheating. The results suggest that the examinees copied answers from their

row-wise neighbors. By contrast, we do not observe excess similarities for back-front

neighbors or any other neighbor definition. Third, we demonstrate that most of the cheat-

ing happened in pairs in which at least one student had a below-than-median academic

ability, measured by their high-school GPA. Fourth, regarding the amount of cheating, the

lower-bound estimate for the share of cheating pairs is 7.7%. Additional evidence sug-

gests that, on average, cheating pairs increased the number of shared answers by at most

45.6%. We conclude that, under baseline monitoring, cheating is widespread.

As a next step, our field experiment examines how to counteract the high levels of

plagiarism. To do this, the experiment randomly assigned students to three groups. The

control group implemented the university’s standard exam conditions, consisting of weak

(baseline) monitoring. We contrast this control group to two treatment conditions: a

monitoring treatment and a signature treatment. The monitoring treatment created an

environment of close monitoring by increasing the number of proctors per lecture hall.

The signature treatment, meanwhile, implemented baseline monitoring but required stu-

dents to sign an honesty declaration before the exam. Our main insights from the exper-

iment are as follows. Under close monitoring, the answers of actual neighbors were not
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more (or less) similar than those of counterfactual neighbor pairs. Hence, in our exams,

close monitoring eliminated all measurable traces of cheating. In sharp contrast to the

findings on monitoring, our second countermeasure backfired and induced more cheat-

ing: in the signature treatment, the amount of cheating identified by our methods is twice

as large as in the control group. Combining a second round of experiments with a post-

exam survey, we also find that the examinees who had to sign the honesty declaration

believed that cheating in exams was more common than students in the control group

did. This result suggests that the signature treatment backfired because it weakened the

perceived social norm of academic integrity.

Our paper contributes to several strands of literature. First, we extend the litera-

ture on the measurement of plagiarism that tests for cheating by examining whether the

students’ answers are unusually similar (see, e.g., Holland, 1996; Wollack, 1997, 2003,

2006; Wesolowsky, 2000; Sotaridona and Meijer, 2003; van der Linden and Sotaridona,

2006). Whereas the proposed approaches in this literature investigate if two suspected

cheaters indeed plagiarized, we instead identify plagiarism in a large population of possi-

ble cheaters. To that end, we introduce the previously described identification approach

of plagiarism. Closely related, Lin and Levitt (2020) also compare neighbors and non-

neighbors to identify cheating. However, as they could only partially randomize students

to seats, their methods rely on stronger assumptions.3 In a different vein, we also extend

the literature by providing techniques for bounding the amount of cheating, describing

the characteristics of cheating pairs, and identifying the effects of countermeasures.

Second, we contribute to the emerging literature on the countermeasures against and

the determinants of academic dishonesty. Lin and Levitt (2020) show that a bundled pol-

icy that jointly (a) prevents students from choosing a seat, (b) increases the number of

proctors, and (c) shuffles multiple-choice answers can eliminate plagiarism. We, instead,

identify the pure effect of close monitoring. Regarding honesty declarations, the litera-

ture offers little guidance on their usefulness to fight academic cheating, in spite of the

fact that they are widespread. While some practitioners doubt that such declarations in-

crease academic honesty (Cheung, 2012), descriptive work suggests that cheating tends to

be lower at honor-code institutions that frequently utilize honesty declarations (Bowers,

1964; McCabe and Trevino, 1993; McCabe et al., 2001). However, to our knowledge, the

3Lin and Levitt (2020) study a midterm and a final exam. In the midterm, examinees freely chose their
seats. Hence, the analysis relies on the assumption that any excess similarity in the neighbors’ answers
reflects plagiarism and not the self-selection of similar students to neighboring seats. To test if this assump-
tion holds, the final exam implements a clever design element: the authors record the seating chart under
self-selection to seats but then randomly reseat students. This feature allows them to study if students who
plan to sit next to each other give excessively similar answers, in line with the self-selection hypothesis.
The evidence suggests that this is not the case, indicating that the excess similarities in the midterm reflect
cheating. Our method is more direct: we randomize students to seats and, thereby, exclude self-selection
biases by design. We also randomize students to treatments to study their effects.
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causal effect of honesty declarations on academic cheating has yet to be analyzed. Other

work demonstrates that classroom cheating responds to monetary incentives (Jacob and

Levitt, 2003; Martinelli et al., 2018), that anti-plagiarism tutorials reduce plagiarism in

term papers (Dee and Jacob, 2012), and that social interactions (Lucifora and Tonello,

2015) and peer effects (Carrell et al., 2008) amplify academic cheating. The evidence on

social interactions and peer effects is in line with our finding that the adverse effect of an

honesty declaration works through the perceived social norm of academic integrity.

Third, our paper is linked to a broader literature on fostering compliance with rules

and norms in non-academic contexts. Following Becker (1968), a sizable empirical lit-

erature has studied how strategies involving monitoring and auditing affect compliance

behaviors in the context of policing (Levitt, 1997; Di Tella and Schargrodsky, 2004), tax

enforcement (Slemrod et al., 2001; Kleven et al., 2011), and fighting corruption (Olken,

2007; Ferraz and Finan, 2011).4 Our finding that close monitoring in exams eliminates

all measurable traces of cheating supports the consensus in this literature that monitoring

and auditing are highly effective in promoting compliance. By contrast, the literature on

how signed declarations affect compliance in non-academic settings is much smaller, and

the evidence is mixed. To our knowledge, there are only two related field-experimental

studies on the impact of honesty declarations from other contexts.5 Shu et al. (2012)

indicate that signing an honesty declaration placed at the beginning rather than at the

end of an insurance self-report increases honesty. By contrast, the Behavioural Insights

Team (2012) reports that moving an honesty declaration from the bottom to the top of

a form used to apply for a tax discount likely increased fraud. This latter finding is well

in line with emerging literature showing that well-intended interventions, such as trigger

warnings (Jones et al., 2020), can cause backfiring “boomerang effects” (see, e.g., the

reviews of Miron and Brehm, 2006; Rains, 2013; Steindl et al., 2015). In sum, it seems

as if honesty declarations can produce diverging effects, depending on the context stud-

ied. Thus, the literature offers little guidance on whether educators should use honesty

declarations to fight academic dishonesty.

The structure of the paper is as follows. Section 2 introduces our field experiment.

Section 3 describes and applies our approaches to identify plagiarism and offers a de-

tailed analysis of the nature of cheating. Section 4 examines how our treatments impact

plagiarism and studies channels, and Section 5 concludes.

4Recent literature surveys include Chalfin and McCrary (2017) on policing, Slemrod (2019) on tax
enforcement, and Olken and Pande (2012) on fighting corruption.

5There is also related evidence from the laboratory. Some papers suggest that interventions that con-
front individuals with morally charged information immediately before cheating decisions tend to increase
honesty (Mazar et al., 2008; Jacquemet et al., 2019). However, one of the main findings supporting this
view has recently come under attack: Verschuere et al. (2018) fail to replicate the finding of Mazar et al.
(2008) that reminders of the Ten Commandments reduce misreporting (in 19 laboratories).
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2 The Field Experiment

2.1 Background

Exams. We implemented the field experiment in two written, 60-minute undergraduate

exams at the business school of a German university. The department’s examination board

and the responsible lecturers agreed to our interventions. The exams covered the courses

“principles of economics” (first exam) and “principles of business administration” (second

exam). The two exams took place on consecutive weeks. Moreover, each of the two exams

included 30 multiple-choice problems. Each problem consisted of four statements, only

one of which was correct. The examinees’ task was to mark the correct statements on an

answer sheet. All multiple-choice problems had the same weight, and incorrect answers

did not impose a penalty.6 Hence, a student’s rational strategy was to mark a statement,

even if she did not know the correct answer. Furthermore, the students answered all the

problems in the same order.

The Setting’s Benefits. Several aspects of the setting render it well suited to (a) iden-

tify cheating behavior and (b) implement a field experiment to test the effectiveness of

close monitoring and honesty declarations. First, the exams included multiple-choice

problems that, as discussed subsequently, allow us to detect cheating. Second, the exams

were compulsory for students in their first semester and were part of the curriculum for a

bachelor’s degree. Because we focus on freshmen, students were unlikely to have noticed

the changes in the examination conditions that we introduced with our treatments. More-

over, as many students had to take the exams, we are equipped with sufficient statistical

power. Third, both exams took place across several lecture halls. This feature allows us

to randomly allocate our treatments at the lecture-hall level, limiting spillovers between

treatments. Fourth, the university did not have an honor code when we implemented the

experiment, and monitoring in written exams was weak (see Subsection 2.2 for details).

Furthermore, in the years before the experiment, the department did not request students

to sign an honesty declaration before exams. These aspects provide us with a clean setting

to study the impacts of our interventions. Fifth, given that we consider a low-enforcement

environment, we focus on a setting that is representative of many academic contexts.

6We collected the exam data by scanning and electronically evaluating the multiple-choice answer sheets.
This automated procedure ensures that the data are free from corrector bias and measurement error. We
linked the exam data to administrative data on student characteristics.
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2.2 Experimental Interventions

Randomization. The experiment randomly allocated students from two strata (gender

and high-school GPA as a proxy for ability) to one of three experimental conditions: the

control group, the signature treatment, and the monitoring treatment. To that end, we

used a two-step randomization procedure. The first step randomized students from the

strata to lecture halls; all the students in a hall received the same treatment.7 The sec-

ond step randomly assigned students to seats. As we will discuss later, our identification

strategy of cheating critically relies on seat randomization.

Control Group. The control group implemented the department’s standard examination

conditions. Subsequently, we describe them, focusing on the setting’s aspects that most

likely affect the examinees’ cheating decisions. The first likely driver of cheating behavior

is the punishment in case of detection. According to the department’s exam regulations,

students who cheat (e.g., by copying answers from neighbors or using mobile phones) fail

the exam. It is also part of the exam regulations that, before the exam, proctors announce

standardized examination rules by reading them aloud. Figure B1 in Online Appendix B

outlines these announcements. As part of the announcements, proctors highlight that

cheating is prohibited and that detected cheaters fail the exam. The announcements also

emphasize a list of actions that the administration classed as cheating attempts, including

copying answers from neighbors, using unauthorized materials, and not switching off

mobile phones. In the experiment, we made sure that proctors in all halls made the same

announcements. As a result, it seems reasonable to assume that examinees in all halls

similarly knew the consequences of cheating. Subsection 4.2 presents evidence in line

with this notion.

A second essential element affecting cheating behavior is the monitoring level, as it

influences the detection probability of cheating. Notably, the setting we study is one in

which the baseline monitoring level is low. Up to 200 students take exams in lecture halls

with up to 800 seats. However, only two to four university staff members (depending on

the size of the hall) supervise the examinees. Moreover, the supervising staff have little

incentive to monitor the examinees effectively. This is because proctors who intend to

charge a student for cheating need to follow a complex protocol involving consultation

with the department’s examination board and considerable paperwork. Given these com-

plications, it is no surprise that proctors rarely report cheating attempts. In fact, in the

years before the experiment, no single student failed either of the two exams as a result

of attempted cheating charges.

7We informed students before the exam in which lecture hall they would be seated. When arriving at
the hall, they looked up their seat number on a list. Once all students took their seats, the proctors checked
students’ IDs and ensured they took their preassigned seats.
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A third element that likely impacts plagiarism is the spatial distance between exami-

nees, as it determines the students’ ability to plagiarize answers. The seating arrangement

in the experiment was as follows: students were sitting in every second row and every

second column. Put differently, every examinee had to leave empty one seat to her left,

one seat to her right, one seat in front of her, and one seat in her back. The row-wise

distance between two students (1.2 meters, on average) was shorter than the column-

wise distance (1.8 meters) or the diagonal distance (2.2 meters). This fact suggests that

examinees could more easily copy answers from neighbors in the same row than from

examinees sitting in the front or the back. Subsection 3.2 demonstrates that this is, in

fact, the spatial pattern of cheating in our data.

Signature Treatment. The only difference between the control group and the signa-

ture treatment was that students in the signature treatment signed the following honesty

declaration before the exam (see Figure B2 in Online Appendix B for details):

“I hereby declare that I will not use unauthorized materials during the exam.

Furthermore, I declare neither to use unauthorized aid from other participants

nor to give unauthorized aid to other participants.”

We printed this declaration on the cover sheet of the exam materials below a form that

required examinees in all treatments to fill in their names and student IDs. This salient

location was meant to direct the students’ attention to the declaration immediately before

the exam. Indeed, all the examinees in the signature treatment signed the declaration.

Moreover, we gave students enough time to complete the form and sign the declaration

before the exam. Examinees in all treatments, hence, had precisely 60 minutes to work

on the exam itself.

Three further aspects of the signature treatment are essential. First, the declaration

was neutral as opposed to morally loaded in that it did not refer to any ethical norm.8 Sec-

ond, the declaration did not introduce additional information regarding the no-cheating

rule. Instead, the public announcements, which were identical across treatments, laid out

the rule by stating that cheating was prohibited and by highlighting the consequences of

cheating. Thus, the declaration neither varied the existence nor the content of the rule.

By contrast, it aimed at changing the degree of commitment to an existing no-cheating

rule relative to the control group. Third, the students in the control group did not have

to sign the form on the cover sheet. We chose this design element as we are interested in

the effects of a signed honesty declaration.

8We used a neutral declaration because practitioners frequently use this type, both in education-related
settings and beyond. We do not claim that morally loaded declarations would have had the same effects.
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Figure 1: Monitoring Conditions in the Field Experiment
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Notes: This figure is a stylized illustration of baseline monitoring (control group and signature treatment)
and close monitoring (monitoring treatment). Gray dots represent examinees; black squares represent
proctors. The average monitoring intensities were 44.2 examinees per proctor under baseline monitoring
and 8.4 examinees per proctor under close monitoring.

Monitoring Treatment. Our monitoring treatment heavily increased the monitoring in-

tensity compared to the control group and the signature treatment. Specifically, the mon-

itoring treatment implemented close monitoring by allocating additional proctors to the

lecture halls such that, on average, one proctor monitored only 8.4 examinees. By con-

trast, the baseline monitoring level in the control group and the signature treatment was

much lower: in these groups, there were, on average, 44.2 examinees per proctor. To con-

trol the monitoring level, we also ensured that proctors in all halls remained at specific

predefined spots throughout the exam. In the monitoring treatment, these spots were

evenly distributed all over the halls. Instead, in the control group and the signature treat-

ment, proctors took positions in the hall’s front. Figure 1 sketches the hall setups under

baseline and close monitoring. Importantly, the other aspects of the monitoring treatment

were identical to the control group. Thus, the examinees in the monitoring treatment did

not sign an honesty declaration.

2.3 Further Details and Sampling

Further Details. We took several further steps to guarantee that all examination condi-

tions other than the treatment variations were constant across the lecture halls. First, we

harmonized proctor behavior across halls. To that end, the supervising staff had to fol-

low a scripted schedule. The script included the exact wording of all the announcements

to be made before and after the exam. Second, we equalized the monitoring conditions
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Table 1: Balancing Checks

Exam 1 Exam 2

Difference Difference Difference
Control Signature Monitoring Signature– Monitoring– Control Signature Signature–

Control Control Control
(1) (2) (3) (4) (5) (6) (7) (8)

Gender (Female = 1) 0.54 0.56 0.50 0.02 -0.04 0.53 0.53 0.00
(0.04) (0.04) (0.05)

High-School GPA 2.47 2.48 2.50 0.02 0.03 2.48 2.50 0.01
(0.05) (0.05) (0.06)

Math Proficiency 0.75 0.73 0.73 -0.02 -0.02 0.75 0.74 -0.01
(-0.01) (-0.01) (0.02)

Field of Study (Econ. & Sociology = 1) 0.07 0.06 0.09 -0.01 0.02 0.08 0.08 0.00
(0.02) (0.02) (0.03)

Age 19.6 19.6 19.6 -0.04 -0.03 19.7 19.5 -0.15
(0.10) (0.10) (0.11)

Bavaria 0.81 0.83 0.84 0.02 0.02 0.80 0.83 0.03
(0.03) (0.03) (0.04)

Number of Observations 333 208 225 204 149

Notes: This table shows balancing checks for both exams covered in the field experiment. Columns (1) to (3) report treatment-specific means for
Exam 1. Column (4) shows the difference in means between signature and control with standard errors in parentheses. Column (5) reports the
difference in means between monitoring and control. Columns (6) to (8) report means and the difference in means for Exam 2. High-School GPA
is the grade point average from high school (criterion for university admission), ranging from 1.0 (outstanding) to 4.0 (pass). Math Proficiency is
obtained from a university math exam taken prior to the exams studied in the experiment. The proficiency score gives the percentage of total points
the student obtained in the math test. Field of Study is a dummy for students with a major in Economics & Sociology, the reference group being
students enrolled in Economics and Business Administration. Bavaria is a dummy for students who finished high school in Bavaria. Gender and
High-School GPA were used for stratification.
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within all close-monitoring halls and also those within all baseline-monitoring halls. For

example, we ensured that the actual examinee-per-proctor ratios in the halls were iden-

tical to the planned ones.9 There were also no asymmetries in the number of empty seats

between the treatments that would have altered the cheating opportunities of the partic-

ipating students in an ex-ante, unknown way. Third, we ensured that all the conditions

related to the treatment interventions were unobservable to examinees before the begin-

ning of the exam. In particular, the proctors distributed the exam materials and entered

the halls only after all the students took their preassigned seats. As a result, on-the-spot

decisions regarding whether or not to take part in the exam should be uncorrelated with

the treatment assignment. Indeed, we do not find systematic differences in the students’

observable characteristics between the control and treatment groups (see Table 1).

Figure 2: Overview of Field-Experimental Design

Control

Exam 1

Exam 2

Grading / Data Collection

432 students sampled
333 students took exam

Signature
265 students sampled
208 students took exam

Monitoring
310 students sampled
225 students took exam

Sample
1007 students sampled
  766 students took exam

Control
262 students sampled
204 students took exam

Signature
170 students sampled
149 students took exam

Notes: This figure visualizes the experimental design. We implemented the field experiment in two written
exams. Exam 1 comprised a control group, the signature treatment, and the monitoring treatment. Students
assigned to the control group in Exam 1 were also sampled for the intervention in Exam 2, comprising
a control group and a signature treatment group. The figure indicates, for each treatment, the number
of students assigned to the respective treatment group and the number of students who took the exam.
Differences between the two numbers are due to the fact that students could postpone participation to later
semesters.

Sampling. Figure 2 presents an overview of the sampling scheme. Our overall sample

consisted of 1007 students eligible to take the exams. In the first exam, we randomly

assigned 432 students to the control group, 265 to the signature treatment, and 310 to

the monitoring treatment. The show-up rates did not vary significantly between the treat-

ment groups and ranged between 73% and 78%.10 Ultimately, 766 examinees took the

9Due to local examination conditions, students could withdraw from the exam up until the exam day. To
prevent a no-show effect on the examinee-per-proctor ratios, we overbooked lecture halls when randomly
allocating students to treatments. Due to the overbooking procedure, some students could not be seated in
their preassigned hall. We reseated those students to additional halls that were not part of the experiment.

10Two rules that are typical for German universities explain the low show-up rates. First, students can
decide when to sit exams. The only requirement is that, after three terms, they must have passed 10 out of
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first exam: 333 in the control group, 208 in the signature treatment, and 225 in the mon-

itoring treatment. The sampling frame for the second exam used only the 432 students

from the first exam’s control group. Hereby, we ensured that all the considered students

shared a similar treatment history. We did not implement the monitoring treatment in

the second exam. Consequently, we assigned the 432 students to the control group or the

signature treatment of the second exam. Of the sampled students, 353 took the second

exam (control: 204; signature: 149). Notably, if not stated otherwise, the following evi-

dence relies on a sample that pools both exams (i.e., we analyze both exams jointly). We

do not find any evidence that the results for the first and second exams are statistically

different from each other.

3 Detecting Cheating in Exams

3.1 Basic Idea of Tests for Cheating

Basic Idea. Our identification approach starts from the idea that plagiarism leaves de-

tectable traces in the data. If examinees plagiarize, the similarities in seat neighbors’

answers are higher than in a counterfactual scenario without cheating.11 In practice,

however, the counterfactual scenario is not observable, and we must find ways to approx-

imate how the similarities would look in the absence of cheating. For that purpose, we

propose two tests: a non-parametric randomization test and a regression-based test. Both

tests build on a similar core: they approximate the counterfactual scenario without cheat-

ing by creating many counterfactual neighbor pairs consisting of students who were not

sitting side by side. Given the spatial distance, counterfactual neighbors could not plagia-

rize from each other, providing us with an approximation of the counterfactual scenario.

The tests then explore if the similarity in the answers of actual neighbors is statistically

higher than the similarity in the responses of counterfactual neighbors.

Identifying Assumption. The identifying assumption of our tests is that plagiarism is

the only systematic reason why the similarity in the answers of actual neighbors is dif-

ferent from that of counterfactual neighbors. Following Manski’s (1993) framework for

identifying social effects, the assumption holds under two conditions (see, e.g., Manski,

2000; Blume et al., 2011; Herbst and Mas, 2015, for discussions). First, the composition

of both types of pairs needs to be identical. For example, neighbors and non-neighbors

must, on average, have similar individual characteristics. Second, both types of pairs must

the 12 courses that, according to the curriculum, optimally should be taken in the first two terms. Second,
the university does not punish “no shows.”

11Figure B3 in Appendix B exemplifies the spatial patterns in the answers by showing examinees’ answers
to one multiple-choice problem in one particular control-group hall.
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face an identical institutional environment during the exam. The examination conditions,

for example, need to be identical for both types of pairs.

Ensuring that the Assumption Holds. We took two steps to ensure that both condi-

tions were met. First, to guarantee that there were no systematic differences in the com-

position of pairs, we randomly assigned individuals to seats and formed counterfactual

pairs randomly. Hence, we followed the standard approach in the social-effects litera-

ture and exploited randomization schemes to allocate individuals to groups within which

interactions may occur (see, e.g., Sacerdote, 2001; Falk and Ichino, 2006; Kremer and

Levy, 2008; Guryan et al., 2009). Second, to ensure that actual and counterfactual neigh-

bors faced the same institutional environment, we only use non-neighbors who sat in

the same lecture hall to construct counterfactual neighbor pairs. This decision nets out

lecture-hall effects. Note that our approach identifies cheating in the form of plagiarism

only. Other forms of cheating (like, for instance, using crib sheets) stay undetected by our

methods. We, therefore, likely understate the actual incidence of cheating. However, our

conclusions will hold as long as the treatment effects are uncorrelated with the cheating

technology.

3.2 Prevalence of Cheating in Exams

In the following, we identify cheating behavior under baseline monitoring using a spatial

randomization test and a complementary regression-based test.

Randomization Test: Method. Randomization testing goes back to Fisher (1922) and

is a standard inference tool in the analysis of experiments. The key characteristic of ran-

domization tests is that, instead of relying on a theoretical distribution, they compare a

test statistic to a null distribution obtained from the data by resampling.12 Applied to our

context, we consider a test statistic that measures the similarity of neighbors’ answers.

We then test if this measure is unusually high compared to its null distribution (i.e., the

distribution in the absence of cheating), which we obtain by a resampling procedure that

constructs counterfactual neighbors. Along these lines, our procedure allows us to test

against the null hypothesis that the similarities in actual neighbors’ answers are not dif-

ferent from those in counterfactual neighbors’ answers.

More specifically, our baseline testing algorithm consists of four steps:

12Randomization testing is widespread. Researchers rely on it to calculate inference for treatment effects
(Rosenbaum, 2002; Duflo et al., 2008). Other papers use randomization schemes to test how outcomes of
individuals are connected. For example, Falk and Ichino (2006) use an approach similar to ours to identify
peer effects in co-workers’ productivity.
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1. We calculate the share of all multiple-choice problems bsi,i−1 that an examinee i and

her left neighbor i−1 in the same row r answered identically (correct or incorrect).

We do the same for i and her right neighbor i + 1 to derive bsi,i+1 and compute the

test statistic as:

Ò∆=
1
N

N
∑

i=1

1
2
(bsi,i−1 +bsi,i+1),

where N is the number of examinees under baseline monitoring.

2. We create counterfactual neighbor pairs by randomly reassigning examinees within

halls to seats. Our reassignment procedure ensures that the counterfactual pairs

do not consist of two examinees who were actually sitting in the same row. This

feature avoids that the null distribution picks up similarities induced by the row-wise

copying of answers. We then compute the similarity measure for the counterfactual

neighbors, Ò∆C ,m=1.

3. We repeat the second step M times. Hereby, we generate a distribution of Ò∆C ,m

with the values m = 1, ..., M , mean bµ
Ò∆C

, and standard deviation bσ
Ò∆C

. Under our

identifying assumption, this distribution corresponds to the distribution of the test

statistic under the null hypothesis of no cheating.

4. We calculate the p-value of a two-tailed test as twice the probability that a draw

from this distribution exceeds Ò∆.

Our baseline test aims to identify plagiarism from direct neighbors sitting in the same

row. If examinees copied answers from other individuals farther away, the test would un-

derreject its null hypothesis. We, however, find no indications of other forms of cheating

(see paragraph “robustness checks”).

Randomization Test: Baseline Results. Figure 3 reports the results of our baseline

randomization test (M = 5000). It relies on data from both exams and both baseline-

monitoring treatments. For ease of exposition, the figure reports mean-centered values

(i.e., it shows Ò∆− bµ
Ò∆C

and Ò∆C ,m− bµÒ∆C
). This type of normalization allows us to interpret

the test statistic intuitively as the extent to which the share of identical answers among ac-

tual neighbors differs from the expected share for counterfactual neighbors (in percentage

points). The vertical line depicts the mean-centered test statistic. The bell-shaped curves

represent the mean-centered counterfactual distributions under the null hypothesis of no

cheating.

The main finding of Figure 3 is that, under baseline monitoring, the similarity in the

answers of actual neighbors is excessively high compared to the counterfactual distribu-

tion. The test statistic indicates that the share of actual neighbors’ identical answers is

almost two percentage points higher than the expected share for counterfactual neigh-

bors. Moreover, the test statistic lies in the far right tail of the counterfactual distribution,

13



Figure 3: Cheating Under Baseline Monitoring
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Notes: This figure shows the results for our randomization tests, considering the baseline-monitoring
sample. The vertical line represents the test statistic derived from the actual seating arrangement. The
bell-shaped curve plots the mean-centered null distribution based on Epanechnikov kernels. We obtain
p < 0.001 (two-tailed test with Bonferroni correction).

and we can, consequently, clearly reject the null hypothesis of no above-normal similarity

in the answers of actual neighbors (p-value < 0.001).13 This finding is the first piece

of direct evidence that under baseline monitoring, examinees copied answers from their

direct row-wise neighbors.

Randomization Test: Further Results and Robustness Checks. Online Appendix B

presents several additional analyses and robustness checks. First, as mentioned, we inves-

tigate if examinees plagiarized from peers sitting farther away. Figures B6 to B9 present

evidence for a variety of alternative specifications (see Panels A). The figures suggest that,

in our context, only direct row-wise neighbors have plagiarized from each other. Put dif-

ferently, we do not observe excess similarities for back-front neighbors or any other neigh-

bor definition. Second, we probe the robustness of our results to the resampling scheme.

For example, we resample individuals within treatments (i.e., also across halls) instead

of within halls (see Figures B6 to B9).14 Following Cagala et al. (2019), we also present

tests that do not exclude counterfactual neighbors sitting in the same row (see Figures B8

and B9). Our findings are robust. Third, Panel C in Figures B4 and B5 tests for cheating

under close monitoring. In line with the hypothesis that close monitoring nullifies or at

least sharply reduces cheating, we cannot reject the null hypothesis that the similarities

13Including the specifications that are part of our robustness checks, we use six different neighbor defini-
tions to test for cheating. To guard against spurious findings from multiple testing, we employ a conservative
Bonferroni adjustment to correct the reported p-values.

14We prefer to resample individuals within halls because this resampling scheme controls for potential
hall effects and, hence, decreases the probability of false positives. The flipside is that this scheme poten-
tially increases the likelihood of false negatives: if present, the counterfactual distribution would pick up
plagiarism across rows. A randomization scheme that also resamples individuals across halls alleviates this
potential problem (by construction, examinees in different halls could not plagiarize from each other).
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in actual neighbors’ answers are identical to those in counterfactual neighbors’ answers

(p > 0.999).15 Section 4 explores the role of close monitoring in more detail.

Regression-Based Test: Method. While the randomization tests allow us to test for

the presence of cheating without relying on parametric assumptions, they offer relatively

little flexibility. For example, they do not provide a simple way to study effect hetero-

geneity and, hence, the characteristics of cheating pairs. In the next step, we introduce

a regression-based test that offers this flexibility. Before turning to the models that allow

us to study the nature of cheating, we introduce a baseline model that, in a similar vein

to the randomization tests, solely tests for the presence of cheating.

The model, again, rests on the idea of using counterfactual neighbors to identify cheat-

ing between actual row-wise neighbors. Specifically, we estimate the following linear

probability model with OLS:

Ymp = β0 + β1Np + ump, (1)

where Ymp takes a value of one if both students of a pair p gave the same (correct or

incorrect) answer to a particular multiple-choice problem m. Note that p can represent

actual and counterfactual pairs. Furthermore, Np indicates whether a pair of students

consisted of actual neighbors sitting next to each other in the same row (Np = 1) or

not (Np = 0). The estimated coefficient bβ0 measures the probability that counterfactual

neighbor pairs give an identical answer. Instead, under random assignment to seats, bβ1

is a consistent reduced-form estimate of the average effect of being an actual neighbor

pair (instead of a counterfactual pair) on the probability of identical answers. We call

this estimate the average neighbor effect (ANE). An ANE significantly greater than zero

indicates cheating.

Two further details of our regression-based approach are worth noting. First, it iden-

tifies the ANE using the same counterfactual neighbors as the randomization tests. To

do this, we define counterfactual neighbors as pairs of students in the same hall who,

however, sat in different rows. Second, we base statistical inference on a hall-level wild-

cluster-bootstrap procedure (Cameron et al., 2008). Notably, this method of inference

likely underrejects the null hypothesis if (as in our case) only a few clusters are treated or

untreated (see, e.g., MacKinnon and Webb, 2017). Hence, our approach is conservative.

Regression-Based Test: Results. Table 2 reports estimates of the AN E, focusing on

all lecture halls with baseline monitoring and both exams. Column (1) shows uncon-

15This finding also suggests that our tests, indeed, identify plagiarism in exams. Otherwise, we would
not necessarily expect that the monitoring treatment reduces the similarities in actual neighbors’ answers.
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ditional estimates. The estimated AN E is positive and significantly different from zero

(p < 0.001). The regression, thus, replicates the finding of the randomization test that

students cheated under baseline monitoring. The effect is also sizable: compared to the

57.5% probability that counterfactual neighbors shared an identical answer, the probabil-

ity among actual neighbors is 2.02 percentage points, or 3.5%, higher. Column (2) adds

our complete set of control variables to model (1). Specifically, it controls for multiple-

choice fixed effects, hall fixed effects, and two types of pair-specific variables: control vari-

ables for gender combinations (a female-female dummy and a male-male dummy) and

controls for high-school grade combinations (grade indicators for the better and worse

student as well as interactions). Because we randomly assigned examinees to seats, there

is no reason to expect the controls to affect the average neighbor effect. Indeed, the

estimate in Column (2) is only slightly different from that in Column (1).

Table 2: Average Neighbor Effect Under Baseline Monitoring

Dependent Variable: Indicator for Identical Answer

(1) (2)
Unconditional

Estimate
All

Controls

Actual Neighbors 0.0202 0.0188
[0.0002] [0.0004]

Multiple Choice FE No Yes
Hall FE No Yes
Pair Controls No Yes

Mean for Counterfactual Neighbors 0.577
Number of Clusters 8
Number of Observations 1,121,034

Notes: This table reports estimates of the average neighbor effect on the probability that two paired students
provide identical (correct or incorrect) answers under baseline monitoring. The estimates rely on linear
probability models. The specifications define counterfactual neighbors as pairs of students in the same hall
who did not sit next to each other. Column (1) presents the unconditional estimates. Column (2) adds
controls (multiple-choice fixed effects, hall fixed effects, indicators for gender combinations, and indicators
for high-school grade combinations). All specifications also include an exam dummy. Wild-cluster-bootstrap
p-values in [brackets].

Regression-Based Test: Further Results and Robustness Checks. Again, we present

additional results and robustness checks in Online Appendix A. Table A1 considers iden-

tical correct and incorrect answers separately. The examinees seem to have plagiarized

correct and incorrect answers, although the estimates for incorrect answers are more pre-

cise. Furthermore, Table A2 demonstrates that, when using non-neighbors sitting in the

same row as counterfactual neighbors, the results remain essentially unchanged.16

16In a previous version, we used this counterfactual definition to derive our results (Cagala et al., 2019).
The benefit of this alternative approach is that it indirectly controls for row effects as it compares counter-
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3.3 Nature of Cheating

The purpose of this subsection is to explore the nature of cheating. The results demon-

strate (a) how cheating correlates with the students’ ability and (b) how it shifts the

distribution of identical answers. The distributional analysis also allows us to provide a

lower bound for the share of cheaters.

Grade Heterogeneity: Method. The previous subsection established that actual neigh-

bors shared a suspiciously high number of similar answers under baseline monitoring. We

expect to detect especially strong traces of plagiarism if at least one of the two students

of a pair is an academically weaker student. Intuitively, weaker students should be less

able to succeed in the exam, increasing their need to cheat.

To test this hypothesis, we estimate an extended version of the model (1) that allows

the neighbor effect to vary in the pairs’ ability composition. Specifically, we approximate

an examinee’s academic ability by her final high-school GPA and estimate the model:

Ymp = β0 + β1Np + β2Hp + β3Mp + β4Hp × Np + β5Mp × Np + ump. (2)

As apparent, the model interacts the binary indicator for actual neighbors Np with two

dummy variables, measuring the ability composition of pair p. The first dummy, Hp, indi-

cates if both students of pair p performed better in high school than the median student.

The second one, Mp, is a dummy variable for pairs in which one student performed better

and the other one worse than the median student. Crucially, the interacted structure of the

model allows the neighbor effect to vary across three types of pairs: “high-ability pairs”

consisting of two above-median-ability students (i.e., Hp = 1), “low-ability pairs” being

composed of two below-median-ability students (i.e., Mp = 0 and Hp = 0), and “mixed

pairs” (i.e., Mp = 1). The OLS estimates of β1 measure the ANE for low-ability pairs. By

contrast, the estimates of β4 and β5 capture deviations from this baseline neighbor effect

for high-ability pairs and mixed pairs.17

Grade Heterogeneity: Results. Figure 4 graphically decomposes the average neighbor

effects, considering the pooled baseline-monitoring sample. To construct the figure, we

estimate three versions of the model (2) that use different outcome variables: a dummy

indicating if both students of pair p answered question m (a) identical (Panel A), (b)

identical and incorrect (Panel B), or (c) identical and correct (Panel C). Moreover, Figure

factual neighbors and actual neighbors within rows. The drawback is that the estimated neighbor effects
might be too small due to cascades of cheating within rows which confound the counterfactual. All the
results of our paper are widely unchanged when applying the previous estimation strategy.

17If Np is randomized, the estimates of β1, β4, and β5 are unbiased and consistent. By contrast, the
estimates of β2 and β3 pick up potential correlations between the grade variables and ump.
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4 separately depicts the average neighbor effects for high-ability pairs (gray circles),18

mixed pairs (red squares),19 and low-ability pairs (blue diamonds).20 It also shows wild-

cluster-bootstrap 95% confidence intervals.

Figure 4: Grade Heterogeneity in the Average Neighbor Effect

A: Identical Answer B: Identical Incorrect Answer C: Identical Correct Answer
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Notes: This figure examines how the students’ ability (proxied by high-school GPA) relates to their cheating
behavior under baseline monitoring. To construct this figure, we estimate the effects of being a pair of
actual neighbors on the probability that two students give identical answers (Panel A), identical incorrect
answers (Panel B), or identical correct answers (Panel C). Crucially, we allow the effects to vary in whether
both students (gray circles), one student (red squares), or none of the students of pair p (blue diamond)
performed better in high school than the median student. All specifications include an exam dummy and
derive the 95% confidence bands by a wild-cluster-bootstrap procedure.

Panels A to C, indeed, show substantial heterogeneity in the average neighbor ef-

fect. First, considering all identical answers as an outcome, the average neighbor effect

for high-ability pairs is relatively small and not significantly different from zero (esti-

mate A1). The same result applies if we separately consider identical incorrect (B1) or

identical correct answers (C1). These results suggest the absence of significant cheat-

ing among examinees of above-median ability. Second, in line with the hypothesis that

below-median-ability students cheated, we find significant neighbor effects if one of the

two examinees performed worse in high school than the median student (A2). The point

estimates for identical incorrect (B2) and identical correct answers (C2) are relatively sim-

ilar, suggesting that cheaters cannot distinguish between true and false answers. However,

our estimate for identical correct answers is less precise and only significant at the 10%

level. Third, we report stronger above-normal spatial correlations in identical answers

for low-ability pairs (A3). The fact that the point estimate for low-ability pairs is higher

than for mixed pairs is in line with the interpretations that (a) mainly low-ability students

cheated and (b) both students of low-ability pairs copied from each other (bidirectional

cheating).21 The reason is that we identify cheating at the pair level. Hence, we expect

18The gray circles depict bE[Ymp|Np = 1, Hp = 1, Mp = 0] − bE[Ymp|Np = 0, Hp = 1, Mp = 0] = bβ1 + bβ4,
where bE[·] denotes a conditional average computed on the sample.

19The red squares show bE[Ymp|Np = 1, Hp = 0, Mp = 1]− bE[Ymp|Np = 0, Hp = 0, Mp = 1] = bβ1 + bβ5.
20The blue diamonds plot bE[Ymp|Np = 1, Hp = 0, Mp = 0]− bE[Ymp|Np = 0, Hp = 0, Mp = 0] = bβ1.
21We cannot reject the hypothesis that the AN E for low-ability pairs is twice the size of mixed pairs.
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larger neighbor effects for pairs in which both examinees plagiarized from each other than

for pairs with only one cheater. Fourth, low-ability pairs rather tended to copy wrong an-

swers from each other (compare B3 and C3). This result is intuitive: students should

only plagiarize questions that they cannot answer themselves. Crucially, two low-ability

neighbors likely fail to solve the same (difficult) questions, resulting in more plagiarism

of incorrect than correct answers.22

Grade Heterogeneity: Discussion and Conclusions. To sum up, the first conclusion

of Figure 4 is that mainly the below-median-ability examinees seemed to have cheated.

This finding is in line with studies based on self-reported data (Genereux and McLeod,

1995; McCabe and Trevino, 1997). One straightforward explanation is that more able

students have less need to cheat because they can succeed in the exam without help.

Moreover, the high-ability individuals might even take a competitive stance and shield

their answers to prevent other examinees from copying. Low-ability students, instead,

might be more willing to allow copying (or they even trade their answers). In a different

vein, high-ability students might also cheat less because they hold different views on

academic integrity. The second conclusion of Figure 4 is that, in line with Lin and Levitt

(2020), cheating leaves more easily identifiable traces in jointly incorrect than jointly

correct answers. First, the precision of the estimated neighbor effects for jointly incorrect

answers is much higher. Second, the effects for identical incorrect answers are also larger

for low-ability pairs, which also simplifies identification for this subgroup. We conclude

that identical incorrect answers introduce less noise and reflect a larger part of cheating

for low-ability pairs. Hence, they are the more powerful indicator of plagiarism in our

context. In the following, we consequently use identical incorrect answers as our primary

outcome variable.

Grade Heterogeneity: Robustness Checks. Online Appendix B presents several robust-

ness checks. Figure B10 includes multiple-choice fixed effects, lecture-hall fixed effects,

and pair controls. Figure B11 defines the grade indicators based on the performance of

the mean student instead of the median student. Both checks leave the results essentially

unchanged.

Distributional Analysis: Method. By definition, pairs composed of cheaters share a

higher number of identical answers than non-cheating pairs. Hence, starting from a

scenario without cheating, we expect that plagiarism shifts mass in the distribution of

22We do not expect the same effect for mixed pairs. High-ability students more likely solve questions
that are unsolvable for low-ability students, rendering it more likely that low-ability students copy correct
answers.
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identical answers from lower to higher numbers. We test this hypothesis under baseline

monitoring.

To study the distributional impacts of cheating, we proceed in three steps. The first

step plots the distributions of identical incorrect answers for counterfactual and actual

neighbor pairs and compares them. In line with cheating, the distribution for actual

neighbors should feature more mass in the right tail than the distribution for counter-

factual neighbors. In a second step, we test if the distributions for actual and coun-

terfactual neighbor pairs are, indeed, statistically different from each other. We use a

non-parametric Wilcoxon signed-rank test that accounts for potential correlations at the

hall level.23 The third step directly compares the distributions visually by calculating and

plotting the difference between the actual and counterfactual distribution for each value

of X , where X counts the number of identical incorrect answers. We label the resulting

X -specific differences “neighbor effects on the distributions” (N EDX ).

Distributional Analysis: Results. Figure 5 presents the results from the distributional

analysis for the pooled baseline-monitoring sample. The solid red line in Panel A depicts

the fraction of actual neighbor pairs that share X identical answers, f X . The dashed blue

line shows the respective fraction for counterfactual neighbor pairs, ef X . Panel B depicts

the corresponding neighbor effects, N EDX = f X − ef X .24 For visibility, the figure focuses

on X -values between 0 and 8. Figure B13 in the Appendix shows the distributions up to

X = 12, which is the maximum of identical incorrect answers given by a pair.

The key insight from the analysis is that, relative to the counterfactual distribution,

some mass in the distribution for actual neighbor pairs seems to be shifted to the right.

Indeed, the Wilcoxon signed-rank test rejects its null hypothesis that both distributions

are the same (p = 0.028). Panel A of Figure 5 demonstrates the underlying shift to

the right visually. Specifically, the fraction of actual neighbors who share less than two

identical incorrect answers is lower than that for counterfactual neighbors. This missing

mass appears to be shifted to higher X -values: the mass for actual neighbors above X = 1

exceeds that for counterfactual neighbors (Panel A), resulting in positive neighbor effects

(Panel B). The N EDX peaks at X = 3 and converges towards zero for X > 5.25 Given

that we do not observe much more excess mass in the right tail of the distribution for

23The test collapses the data to the hall level. It then compares the two related samples, “counterfactual
neighbors” and “actual neighbors,” to assess whether their population mean ranks differ.

24Note that we can also estimate the neighbor effect with regressions. Specifically, for each X , we may
estimate: Y X

p = β
X
0 + β

X
1 Np + up ∀ X = 0, ..., 30, where Y X

p is a binary outcome variable, indicating if the
two students of pair p gave precisely X identical incorrect answers (Y X

p = 1) or not (Y X
p = 0). In these

regressions, βX
0 reflects the fraction of counterfactual neighbor pairs that share X identical answers, ef X . By

contrast, βX
1 identifies the average neighbor effect on Y X

p , f X − ef X .
25The statistical power increases mechanically in X , explaining the wider C Is for lower X values.
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Figure 5: Shift in the Distribution of Identical Incorrect Answers
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Notes: This figure shows how cheating shifts the distribution of identical incorrect answers. Panel A depicts
the distribution of identical incorrect answers for counterfactual neighbor pairs (solid red line) and actual
neighbor pairs (dashed blue line). Panel B shows the corresponding neighbor effects, which are the X -
specific differences between the actual and counterfactual distribution shown in Panel A. To construct the
95% confidence bands in Panel B, we estimate the model described in Footnote 24 and employ our standard
wild-cluster-bootstrap procedure.

actual neighbor pairs, we conclude that, on average, examinees copied a limited number

of answers from their neighbors rather than copying entire exams.

3.4 Amount of Cheating

Next, we quantify the amount of cheating. In a first step, we derive a lower bound for the

share of neighbor pairs that plagiarized. Building on this estimate, in a second step, we

then provide back-of-the-envelope calculations for the average number of answers copied

by cheating pairs.

Share of Cheaters: Method. Our lower-bound estimate measures the share of all neigh-

bor pairs in which one or both students cheated. It follows from comparing the distribu-

tions of identical incorrect answers between actual and counterfactual pairs (see Figure

5). The main complication of such an aggregate comparison is that it does not reveal the

cheating behavior of every single pair of actual neighbors. Hence, it does not allow us to

pin down the fraction of cheaters precisely. However, as Appendix C discusses in more

detail, the comparison allows us to bound the share of cheaters. To that end, we em-

ploy a distribution-based two-step procedure: first, we obtain the set of total aggregated

neighbor effects T N E = {T N E1, T N E2, ..., T N E29} with T N EX ∗ =
∑30

X=X ∗ N EDX .26 Each

26Hence, T N EX ∗ is the total excess mass of the actual over the counterfactual distribution above X ∗.
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of the total aggregated neighbor effects T N E1 to T N E29 reflects a subset of cheaters. In

particular, T N EX ∗ measures the share of neighbor pairs that, by copying from each other,

increased their number of identical incorrect answers from less than X ∗ to X ∗ or more.27

Second, we analyze which of the 29 subsets of cheaters, given by the aggregated neigh-

bor effects, is the largest and define the lower bound as the largest of those subsets.28

Thus, our strategy maximizes the share of cheating pairs identifiable with distributional

analyses.

Share of Cheaters: Results. Figure B14 in Online Appendix B presents the estimates

for the total aggregated neighbor effects T N E1 to T N E12. The estimated total aggregated

neighbor effect is the largest for X ∗ = 2, with a value of T N E2 = 7.7%. This value

defines our lower-bound estimate for the share of neighbor pairs that comprise at least

one cheating student. Intuitively, it implies that the subset of cheaters that increased their

number of identical incorrect answers from less than two to two or more answers amounts

to 7.7% of all pairs. Notably, our lower bound for the share of cheaters is well in line with

Lin and Levitt (2020), who identify cheating behavior in at least 10% of their examinees.

We conclude that cheating occurred in a sizable fraction of neighbor pairs.

Share of Cheaters: Robustness Checks. There are two reasons why the presented esti-

mate for the share of cheaters, T N E2, identifies a lower bound: first, the analysis exploits

only incorrect answers, our less noisy outcome. However, if some pairs systematically

copied only correct answers, T N E2 underestimates the share of cheating pairs. Second,

as the aggregated analysis cannot identify if a particular pair cheated or not, it poten-

tially misses some forms of cheating. For example, T N E2 neglects those cheating pairs

that, without cheating, would already share more than two identical incorrect answers.29

To test the robustness of our results to these limitations, Online Appendix D extends our

randomization tests. The extended test identifies cheating at the pair level and relies on

all identical (correct and incorrect) answers. The results suggest that the distribution-

based lower bound provides a reasonable estimate of the percentage of cheating pairs.

27To see this, recall that our identifying assumption states that plagiarism is the only systematic reason
why the similarity in answers differs between actual and counterfactual neighbors. Moreover, by definition,
cheating increases the similarities. Hence, any excess mass in the distribution for actual neighbors at value
X reflects the share of pairs that, by cheating, increased the number of identical incorrect answers from less
than X to X . The T N EX ∗ aggregates the excess mass for X ≥ X ∗ and, therefore, measures the share of pairs
that increased the number of identical incorrect answers from less than X ∗ to X ∗ or more.

28Intuitively, we, thus, analyze which fraction is the largest: the fraction of pairs that, by cheating, in-
crease the number of identical answers from less than one to one or more (measured by T N E1), the fraction
of pairs that increase it from less than two to two or more (measured by T N E2), and so on.

29Consider, for example, a pair of cheaters that, due to cheating, shares four instead of three identical
answers. This type of behavior would leave our lower bound T N E2 =

∑30
X=2 ( f

X − ef X ) unaffected. The
reason is that the increase in f 4 fully compensates for the decrease in f 3 so that T N E2 remains constant.
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According to the extended estimates, between eight and ten percent of the pairs engaged

in cheating.

Amount of Cheating Among Cheaters. Finally, we discuss our back-of-the-envelope

calculations for the average number of answers copied by cheating pairs. To that end,

recall that cheating increased the probability that actual neighbor pairs shared an identi-

cal (correct or incorrect) answer by 2.02 percentage points (see Column (1) in Table 2).

Transformed to the exam level consisting of 30 multiple-choice problems, actual neigh-

bor pairs, hence, shared 0.0202 · 30 = 0.61 additional identical answers compared to

counterfactual neighbor pairs. However, not all of the actual neighbor pairs plagiarized.

Using the lower bound estimate for the share of cheating neighbor pairs of 7.7%, we can

approximate an upper bound for the average number of copied (correct and incorrect)

answers among cheating pairs as 0.61/0.077 = 7.9.30 Thus, on average, cheating pairs

seem to have plagiarized at most 7.9 identical answers, which corresponds to 26.2% of the

30 problems. As the average number of identical (correct and incorrect) answers among

counterfactual neighbor pairs was 17.3, we can also state that, on average, cheating pairs

increased the number of shared answers by at most 45.6%.

4 Preventing Cheating in Exams

4.1 Effectiveness of Close Monitoring and Honesty Declarations

Method. To examine if the signature and monitoring treatments can prevent cheating,

we extend the model (1) such that the neighbor effect can vary by treatment. Specifically,

we estimate the following regression with OLS:

Ymp = β0 + β1Np + β2STp + β3M Tp + β4STp × Np + β5M Tp × Np + ump, (3)

where Ymp is a binary indicator for identical incorrect answers, Np indicates if pair p

consisted of actual neighbors, STP indicates whether the students of pair p received the

signature treatment, and M Tp is a binary indicator for the monitoring treatment. In this

equation, the estimate bβ0 measures the probability that counterfactual neighbors in the

control group give an identical incorrect answer. By contrast, bβ2 and bβ3 show if and to

what extent the signature and monitoring treatments change this probability for coun-

terfactual neighbors. Moreover, under random treatment assignment, the estimate bβ1

30For simplicity, the calculation uses the estimate for the share of cheaters derived from the distributions
of identical incorrect answers. If we, instead, exploit the randomization estimate presented in Appendix D
that relies on identical correct and incorrect answers, the result is almost identical (copied answers: 7.6).
The reason is that both estimation strategies for the share of cheaters deliver similar results.
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identifies the neighbor effect in the control group. Consequently, bβ4 and bβ5 reflect devia-

tions from this baseline neighbor effect in the signature and monitoring treatment. Again,

we employ the conservative wild-cluster-bootstrap procedure for statistical inference.

Figure 6: Treatment Heterogeneity in the Average Neighbor Effect

A: Unconditional Estimates B: All Control Variables
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Notes: This figure shows the average neighbor effect on identical incorrect answers for the control group
(gray circles), the signature treatment (red squares), and the monitoring treatment (blue diamonds). To
construct this figure, we estimate model (3) and, based on this model, predict the treatment-specific neigh-
bor effects. Panel A presents the unconditional estimates. Panel B adds the complete set of control variables
to our model (hall fixed effects, multiple-choice fixed effects, indicators for gender combinations, and indi-
cators for high-school grade combinations). All specifications also include an exam dummy and derive the
95% confidence bands by a wild-cluster-bootstrap procedure.

Results. Table 3 demonstrates the impacts of the signature and monitoring treatments

on cheating, pooling the data over both exams. Again, Column (1) presents unconditional

estimates, and Column (2) includes the complete set of control variables. The lecture-hall

effects in Column (2) fully absorb the baseline effects for the signature and monitoring

treatments. In addition to the table, Figure 6 shows the corresponding treatment-specific

neighbor effects for the models without (Panel A) and with control variables (Panel B).31

We present four main results. First, in line with the notion that students in the con-

trol group cheated, the point estimates of the average neighbor effects are positive and

amount to 0.0072 and 0.0076. Although employing a conservative inference method,

we can reject the null hypothesis of no effect at the 10% level (without controls) and

6% level (with controls). The estimates imply that the probability that actual neighbors

shared an identical incorrect answer was between 0.72 percentage points (≈ 19.5%) and

0.76 percentage points (≈ 20.5%) higher than the 3.7% probability that counterfactual

neighbors shared such an answer.

31The gray circles depict bβ1, the red squares show bβ1 + bβ4, and the blue diamonds plot bβ1 + bβ5.
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Table 3: Responses to the Signature and Monitoring Treatments

Dependent Variable: Indicator for Identical Incorrect Answer

(1) (2)
Unconditional

Estimates
All

Controls

Signature 0.0004
[0.8928]

Monitoring −0.0007
[0.8217]

Actual Neighbors 0.0072 0.0076
[0.0917] [0.0545]

Signature × Actual Neighbors 0.0092 0.0085
[0.0469] [0.0524]

Monitoring × Actual Neighbors −0.0057 −0.0077
[0.0861] [0.0215]

Multiple Choice FE No Yes
Hall FE No Yes
Pair Controls No Yes

Mean for Counterfactual Neighbors 0.037
Number of Clusters 11
Number of Observations 1,412,787

Notes: This table demonstrates how the treatments change the likelihood that two paired students provide
identical incorrect answers. The estimates rely on linear probability models. Column (1) presents the un-
conditional estimates. Column (2) adds controls (multiple-choice fixed effects, hall fixed effects, indicators
for gender combinations, and indicators for high-school grade combinations). All specifications also include
an exam dummy. Wild-cluster-bootstrap p-values in [brackets].

Second, compared to the control group, the signature treatment significantly and sub-

stantially increased the probability that actual neighbors shared an identical answer. More

specifically, the neighbor effects in the signature treatment are more than twice the size

of the effects in the control group (see Figure 6). The corresponding interaction effects

Signature × Actual Neighbors lie between 0.0085 and 0.0092 with p ≤ 0.0524. These esti-

mates imply that actual neighbors in the signature treatment increased the probability of

sharing an identical incorrect answer (relative to counterfactual neighbors) by 0.85 and

0.92 percentage points more than actual neighbors in the control group. Moreover, we

cannot reject the hypothesis that the interaction effects are equal to the average neighbor

effect in the control group (0.7762 ≤ p ≤ 0.8817). Taken together, the findings suggest

that the signature treatment has at least doubled the amount of cheating compared to the

control condition.

Third, the evidence suggests that close monitoring eliminated cheating. Figure 6

demonstrates that the neighbor effects in the monitoring treatment are not only precisely

estimated but also very close to zero (see the estimates A3 and B3 that amount to 0.0015

and 0.0005). Table 3 shows that this is because the coefficients of the interaction term
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Monitoring × Actual Neighbors are negative and (in absolute values) of similar size as the

coefficients of the neighbor effects in the control group. Indeed, we cannot reject the

hypothesis that the absolute values of both coefficients are equal (0.7907≤ p ≤ 0.8801).

Fourth, lending credibility to our design, Table 3 suggests that the similarities in the

counterfactual neighbors’ answers do not differ between our experimental conditions. To

see this, note that the coefficients of the non-interacted treatment indicators bβ2 and bβ3 in

Column (1) are very small and not significantly different from zero.

Robustness Checks. The Online Appendices A and B present additional robustness

checks. Table A3 controls for row effects, and Table A4 employs non-neighbors sitting

in the same row as counterfactual neighbors. The results are robust. Finally, Figure B16

and Table A5 consider identical answers (correct and incorrect) as an outcome variable.

All the average neighbor effects are at least as large as in our main specification (see Fig-

ure B16). However, in line with our previous results, adding identical correct answers to

our outcome introduces noise to the dependent variable, resulting in broader confidence

bands.

Treatment-Specific Share of Cheaters and Amount of Cheating. Following Subsec-

tion 3.4, we can also provide lower bounds for the treatment-specific share of cheaters.

Figure B15 in Online Appendix B reports the corresponding treatment-wise distributions.

The lower bound takes a value of 5.8% in the control group, and it equals 12.7% in the

signature treatment. Under close monitoring, we do not find a significant shift of the dis-

tribution of identical incorrect answers for actual neighbors compared to that for counter-

factual neighbors. This result suggests that the share of cheaters was close to zero under

close monitoring. Next, we apply our back-of-the-envelope calculation to determine the

amount of cheating among cheaters. The results suggest that cheaters plagiarized, on

average, 8.3 wrong answers in the control group and 6.3 wrong answers in the signature

treatment. Taken together, these suggestive results imply that the signature treatment

converted some non-cheaters into cheaters. However, those “converted students” seem

to have plagiarized, on average, less than the cheaters in the control group.

4.2 Suggestive Evidence on Channels

The finding that close monitoring eliminates cheating is in line with the aforecited lit-

erature on deterrence and Becker’s (1968) seminal theory on crime and punishment.

By contrast, the standard theories (including the one of Becker) have more difficulties

explaining why the honesty declaration backfired. Against this backdrop, we provide

suggestive evidence on the channels through which the signature treatment might have
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elevated cheating. The evidence comes from a follow-up experiment conducted in the

years after the experiment described in Section 4 (now labeled initial experiment). For

brevity, this subsection only offers a brief overview of the design and the main results.

Online Appendix E presents the details.

Possible Channels. We consider three channels through which the request to sign an

honesty declaration could have increased cheating. First, the request may have decreased

the perceived sanctions for plagiarism. One situation in which this effect could have oc-

curred is when students overestimated the sanction without such a request. The demand

to sign the declaration may then have directed the examinees’ attention to the sanction’s

true (lower) level. Second, the request also could have signaled that the monitoring of

examinees is ineffective, lowering the students’ perceived detection probability. Third,

the declaration might have shifted the examinees’ beliefs about their peers’ honesty. In

particular, they may have interpreted the declaration as a signal that cheating in exams

is widespread, weakening the perceived descriptive norm of academic integrity.32 Stu-

dents with a preference to conform to their descriptive norm (Bernheim, 1994) should

then also have cheated more (e.g., because they found cheating more acceptable if it is

widespread).

Study Design. We conducted the follow-up experiment with two new cohorts of fresh-

men who took the first exam (principles of economics) in two semesters after the initial

experiment. The basic idea of our design was to study how an honesty declaration that

the students signed before an exam affected the students’ self-reported perceptions of

cheating-related sanctions, detection probabilities, and descriptive norms. More specif-

ically, our design consisted of two elements. First, similar to our initial experiment, we

induced random variation in whether or not the examinees had to sign the honesty dec-

laration before the exam. The probability for assignment to the signature treatment was

50%. Second, we elicited the students’ perceptions via a survey. To this end, two hours

after the exam, we invited the examinees to participate in a paid (€3.50) five-minute

online survey on “how students generally perceive exams at the university.” To prevent

the students from foreseeing our goal to study the impact of the honesty declaration, we

did not refer to the previous exam at any point during the survey. Furthermore, rather

than inviting examinees to our study through the courses’ usual communication channels,

we recruited them through an official mailing list that researchers at the department fre-

quently use to invite students to complete surveys.

32The literature frequently highlights two types of norms (Lapinski and Rimal, 2005). Injunctive norms
reflect people’s perceptions about what should be done. Descriptive norms refer to beliefs about what is
actually done by others.
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Sample. In sum, the two new cohorts of freshmen consisted of 1060 students. Before

the follow-up experiments, however, only 233 of these students signed up for the mailing

list to participate in academic studies. Hence, we could only contact this subset of students

for our survey. Ultimately, 103 students completed the survey within two days after the

invitation. The signature treatment and the control group were balanced in observable

characteristics (see Table E2 in Online Appendix E). Furthermore, the survey participants

had similar characteristics as non-participants (see Table E3).

Perceived Sanctions: Results. The post-exam survey measured the students’ perceived

sanctions for cheating. Particularly, we asked the survey participants to indicate their

expected sanction (out of a list of five options) for two hypothetical peers: one who

plagiarized in their last exam and one who used unauthorized materials in their last exam.

We do not find any effect of the signature treatment on the students’ perceived sanctions

(see Table E4 in Online Appendix E). First, independent of the treatment, a vast majority of

participants correctly indicated that cheaters would have failed the last exam (plagiarism:

71.8%; unauthorized materials: 84.5%). Second, for both forms of cheating, we cannot

reject the null hypothesis that the signature treatment did not affect the distributions of

the perceived sanctions.

Perceived Detection Probability: Results. Our survey also investigated impacts on the

students’ perceived detection probabilities. To that end, we elicited students’ beliefs about

how many out of 100 students who (hypothetically) cheated in their last exam would

have been caught. Our survey included two versions of this question: one that focused

on plagiarism and one that dealt with unauthorized materials. Again, we do not find any

significant impacts of the signature treatment on the students’ post-exam-survey answers

(see Table E5 in Online Appendix E).

Descriptive Norms: Results. In sharp contrast to the previous findings, the treated

students expected their peers to have cheated more (see Table E5 in Online Appendix

E). We asked the survey participants to think about their last exam and to state how

many of 100 students they believed had cheated. Our results suggest that, compared to

control-group students, examinees who signed the honesty declaration believed that four

to five additional peers (out of 100) plagiarized or used unauthorized materials. We also

asked the participants how many peers (out of 100) they believed would have cheated

in hypothetical scenarios in which the detection probability would have been zero.33 The

33The reason why we added these additional questions is that the perceived frequency of cheating in
the exam might reflect, to some extent, the perceived sanction instead of the underlying descriptive norm.
Given the previously reported results on the expected sanction, this is rather unlikely. However, because
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effects become more pronounced: compared to the control group, the treated examinees

stated that they believed that 15 additional students would have plagiarized and about

20 additional students would have used unauthorized materials.34 In summary, although

the survey cannot ultimately identify the mediating mechanisms, the evidence suggests

that the honesty declaration has weakened the students’ descriptive norms of academic

integrity.

5 Conclusion

Academic cheating is a wasteful illicit activity. It is, however, difficult to measure and

even harder to fight. This paper studies how to detect, document, and prevent plagiarism

in exams. We offer three contributions to the literature. First, we propose approaches

to identify and quantify plagiarism that rely on comparing the similarity in the answers

of actual seat neighbors (who could plagiarize from each other) and non-neighbors (who

could not copy from each other). Second, applying our methods to undergraduate exams,

we comprehensively document plagiarism among freshmen. We find that at least 7.7%

of the row-wise pairs of seat neighbors plagiarized from each other. Back-of-the-envelope

calculations additionally suggest that, on average, cheating pairs increased the number

of shared answers by at most 45.6%. Moreover, most of the cheating happened in pairs

in which at least one student performed worse in high school than the median student.

Third, by exploiting a field experiment, we demonstrate that close monitoring eliminated

cheating. By contrast, requesting students to sign an honesty declaration backfired: stu-

dents in the signature treatment plagiarized twice as much as students in the control

group. A second round of experiments suggests that this unintended effect arises because

the honesty declaration weakened the perceived social norm of academic integrity.

In conclusion, our paper demonstrates that plagiarism in exams is widespread, that

methods exist to measure and quantify cheating, that close monitoring is an effective tool

to foster academic integrity, and that requesting students to sign honesty declarations is

not. Hence, our paper not only contributes to the academic discussion on how to identify

academic cheating but also speaks to educators around the world on how to enforce (or

not enforce) academic honesty. For the bigger picture, we would like to point out that

similar methods might be applied to detect non-compliant behavior in other contexts. For

example, researchers could use related methods to detect spillovers of enforcement treat-

ments in networks. While our methods could be helpful beyond the academic context,

this result was unknown when designing the experiment, we responded to this measurement concern by
including questions in our survey that set the expected sanction to zero.

34Our design of the follow-up experiment ensures that students in the signature and control group expe-
rienced the same cheating level (see Appendix E). Hence, we can rule out that the students’ perceptions in
the signature treatment differed because they experienced more cheating than the control-group students.
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they aim at identifying forms of non-compliant behavior that generate correlations in the

individuals’ outcomes. For example, in our setting, we focus on plagiarism and, hence,

likely underestimate the total incidence of academic cheating. Indeed, the relevance of

the other types of cheating might have increased over time, especially in the pandemic

years. Thus, we are looking forward to future studies examining the other forms of aca-

demic misconduct as well.
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A Tables

Table A1: Average Neighbor Effect Under Baseline Monitoring

Dependent Variable: Indicator for Identical Answer

(1) (2) (3) (4) (5)
Unconditional

Estimates
MC

Controls
Hall

Controls
Pair

Controls
All

Controls

A: Identical Correct and Incorrect
Actual Neighbors 0.0202 0.0202 0.0195 0.0198 0.0188

[0.0002] [0.0002] [0.0008] [0.0003] [0.0004]
Mean for Counterfactual Neighbors 0.577

B: Identical Incorrect
Actual Neighbors 0.0110 0.0110 0.0112 0.0109 0.0111

[0.0025] [0.0025] [0.0016] [0.0021] [0.0012]
Mean for Counterfactual Neighbors 0.037

C: Identical Correct
Actual Neighbors 0.0092 0.0092 0.0083 0.0089 0.0077

[0.0028] [0.0027] [0.0107] [0.0388] [0.0577]
Mean for Counterfactual Neighbors 0.540

Multiple Choice FE No Yes No No Yes
Hall FE No No Yes No Yes
Pair Controls No No No Yes Yes

Number of Clusters 8
Number of Observations 1,121,034

Notes: This table reports estimates of the average neighbor effect on the probability that two paired stu-
dents provide identical answers under baseline monitoring. Panel A replicates the results of the model (1)
presented in Table 2. This specification regresses a dummy indicating if two students of a pair gave the same
(correct or incorrect) answer to a particular multiple-choice problem on a neighbor dummy. By contrast,
Panel B uses a dummy indicating identical incorrect answers and Panel C a dummy indicating identical
correct answers as an outcome. The estimates rely on linear probability models. Column (1) presents the
unconditional estimates. Column (2) controls for multiple-choice fixed effects. Column (3) controls for
lecture-hall fixed effects. Column (4) adds two types of pair-specific variables to our baseline regression:
control variables for gender combinations (a female-female dummy and a male-male dummy) and controls
for high-school grade combinations (grade indicators for the better and worse student as well as interac-
tions). Column (5) includes all the aforementioned control variables. All specifications also include an
exam dummy. Moreover, the specifications define counterfactual neighbors as pairs of students in the same
hall who, however, sat in different rows. Wild-cluster-bootstrap p-values in [brackets].
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Table A2: Alternative Counterfactual: Neighbor Effect Under Baseline Monitoring

Dependent Variable: Indicator for Identical Answer

(1) (2) (3) (4) (5)
Unconditional

Estimates
MC

Controls
Hall

Controls
Pair

Controls
All

Controls

A: Identical Correct and Incorrect
Actual Neighbors 0.0188 0.0188 0.0187 0.0178 0.0174

[0.0010] [0.0010] [0.0014] [0.0003] [0.0005]
Mean for Counterfactual Neighbors 0.578

B: Identical Incorrect
Actual Neighbors 0.0109 0.0109 0.0113 0.0099 0.0103

[0.0027] [0.0027] [0.0020] [0.0012] [0.0009]
Mean for Counterfactual Neighbors 0.037

C: Identical Correct
Actual Neighbors 0.0079 0.0079 0.0074 0.0079 0.0071

[0.0120] [0.0119] [0.0126] [0.0130] [0.0374]
Mean for Counterfactual Neighbors 0.541

Multiple Choice FE No Yes No No Yes
Hall FE No No Yes No Yes
Pair Controls No No No Yes Yes

Number of Clusters 8
Number of Observations 140,937

Notes: This table reports estimates of the average neighbor effect on the probability that two paired students
provide identical answers under baseline monitoring. Panel A regresses a dummy indicating if two students
of a pair gave the same (correct or incorrect) answer to a particular multiple-choice problem on a neighbor
dummy. By contrast, Panel B uses a dummy indicating identical incorrect answers and Panel C a dummy
indicating identical correct answers as an outcome. The estimates rely on linear probability models. Column
(1) presents the unconditional estimates. Column (2) controls for multiple-choice fixed effects. Column (3)
controls for lecture-hall fixed effects. Column (4) adds two types of pair-specific variables to our baseline
regression: control variables for gender combinations (a female-female dummy and a male-male dummy)
and controls for high-school grade combinations (grade indicators for the better and worse student as
well as interactions). Column (5) includes all the aforementioned control variables. All specifications also
include an exam dummy. Moreover, the specifications define counterfactual neighbors as pairs of students
in the same hall who sat in the same row. Wild-cluster-bootstrap p-values in [brackets].
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Table A3: Responses to the Treatments: Specifications with Row Effects

Dependent Variable: Indicator for Identical Incorrect Answer

(1) (2) (3) (4) (5)
Row

Controls
MC

Controls
Hall

Controls
Pair

Controls
All

Controls

Signature 0.0008 0.0008 −0.0009
[0.8004] [0.7999] [0.8092]

Monitoring 0.0022 0.0022 0.0012
[0.6788] [0.6758] [0.7183]

Actual Neighbors 0.0073 0.0073 0.0077 0.0071 0.0075
[0.0899] [0.0898] [0.0660] [0.0840] [0.0570]

Signature × Actual Neighbors 0.0091 0.0091 0.0085 0.0090 0.0084
[0.0525] [0.0516] [0.0787] [0.0356] [0.0555]

Monitoring × Actual Neighbors −0.0063 −0.0063 −0.0064 −0.0070 −0.0070
[0.0776] [0.0779] [0.0527] [0.0478] [0.0302]

Multiple Choice FE No Yes No No Yes
Hall FE No No Yes No Yes
Row FE Yes Yes Yes Yes Yes
Pair Controls No No No Yes Yes

Mean for Counterfactual Neighbors 0.037
Number of Clusters 11
Number of Observations 1,412,787

Notes: This table demonstrates how the treatments change the likelihood that two paired students provide
identical incorrect answers. The estimates rely on linear probability models. Column (1) includes row
indicators to control for row effects. Column (2) additionally controls for multiple-choice fixed effects. By
contrast, Column (3) additionally controls for lecture-hall fixed effects. Column (4) instead adds two types
of pair-specific variables to our baseline regression: control variables for gender combinations (a female-
female dummy and a male-male dummy) and controls for high-school grade combinations (grade indicators
for the better and worse student as well as interactions). Column (5) includes all the aforementioned control
variables. All specifications also include an exam dummy. Moreover, the specifications define counterfactual
neighbors as pairs of students in the same hall who, however, sat in different rows. Wild-cluster-bootstrap
p-values in [brackets].
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Table A4: Responses to the Treatments: Alternative Counterfactual

Dependent Variable: Indicator for Identical Incorrect Answer

(1) (2) (3) (4) (5)
Unconditional

Estimates
MC

Controls
Hall

Controls
Pair

Controls
All

Controls

Signature 0.0008 0.0008 0.0002
[0.7692] [0.7694] [0.9566]

Monitoring 0.0033 0.0033 0.0036
[0.3222] [0.3215] [0.4851]

Actual Neighbors 0.0073 0.0073 0.0077 0.0067 0.0070
[0.1372] [0.1372] [0.1074] [0.0996] [0.0848]

Signature × Actual Neighbors 0.0088 0.0088 0.0087 0.0080 0.0081
[0.1152] [0.1142] [0.1248] [0.0907] [0.0954]

Monitoring × Actual Neighbors −0.0095 −0.0095 −0.0099 −0.0092 −0.0101
[0.0791] [0.0793] [0.0676] [0.0379] [0.0394]

Multiple Choice FE No Yes No No Yes
Hall FE No No Yes No Yes
Pair Controls No No No Yes Yes

Mean for Counterfactual Neighbors 0.037
Number of Clusters 11
Number of Observations 149,776

Notes: This table demonstrates how the treatments change the likelihood that two paired students pro-
vide identical incorrect answers. The estimates rely on linear probability models. Column (1) presents the
unconditional estimates. Column (2) controls for multiple-choice fixed effects. Column (3) controls for
lecture-hall fixed effects. Column (4) adds two types of pair-specific variables to our baseline regression:
control variables for gender combinations (a female-female dummy and a male-male dummy) and controls
for high-school grade combinations (grade indicators for the better and worse student as well as interac-
tions). Column (5) includes all the aforementioned control variables. All specifications also include an
exam dummy. Moreover, the specifications define counterfactual neighbors as pairs of students in the same
hall who sat in the same row. Wild-cluster-bootstrap p-values in [brackets].

40



Table A5: Responses to the Treatments: All Identical Answers

Dependent Variable: Indicator for Identical Answer

(1) (2) (3) (4) (5)
Unconditional

Estimates
MC

Controls
Hall

Controls
Pair

Controls
All

Controls

Signature −0.0028 −0.0028 0.0003
[0.8658] [0.8658] [0.9868]

Monitoring −0.0448 −0.0450 −0.0443
[0.1548] [0.1542] [0.2396]

Actual Neighbors 0.0159 0.0159 0.0140 0.0166 0.0143
[0.0442] [0.0442] [0.0785] [0.0421] [0.0806]

Signature × Actual Neighbors 0.0105 0.0105 0.0135 0.0085 0.0115
[0.2162] [0.2159] [0.1083] [0.4070] [0.2441]

Monitoring × Actual Neighbors −0.0154 −0.0154 −0.0250 −0.0121 −0.0231
[0.0710] [0.0703] [0.0240] [0.1575] [0.0545]

Multiple Choice FE No Yes No No Yes
Hall FE No No Yes No Yes
Pair Controls No No No Yes Yes

Mean for Counterfactual Neighbors 0.578
Number of Clusters 11
Number of Observations 1,412,787

Notes: This table demonstrates how the treatments change the likelihood that two paired students provide
identical (correct or incorrect) answers. The estimates rely on linear probability models. Column (1)
presents the unconditional estimates. Column (2) controls for multiple-choice fixed effects. Column (3)
controls for lecture-hall fixed effects. Column (4) adds two types of pair-specific variables to our baseline
regression: control variables for gender combinations (a female-female dummy and a male-male dummy)
and controls for high-school grade combinations (grade indicators for the better and worse student as
well as interactions). Column (5) includes all the aforementioned control variables. All specifications also
include an exam dummy. Moreover, the specifications define counterfactual neighbors as pairs of students
in the same hall who, however, sat in different rows. Wild-cluster-bootstrap p-values in [brackets].
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Table A6: Monitoring Intensity by Lecture Hall

Control Signature Monitoring

Hall Students per Hall Students per Hall Students per
Supervisor Supervisor Supervisor

1 51.3 5 56.5 9 9.2
2 49.8 6 47.5 10 8.5
3 38.0 7 44.5 11 8.0
4 29.0 8 30.0

Treatment-specific Averages

46.4 46.6 8.4

Notes: This table contains information on the number of students per supervisors in each lecture hall. It
also shows the weighted average of the monitoring intensity within the control group, the signature, and
the monitoring treatment, respectively (weights: number of students in lecture hall).
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Table A7: Responses to the Signature and Monitoring Treatments in First Exam

Dependent Variable: Indicator for Identical Incorrect Answer

(1) (2)
Unconditional

Estimates
All

Controls

Signature −0.0007
[0.8582]

Actual Neighbors 0.0044 0.0055
[0.3336] [0.1811]

Signature × Actual Neighbors 0.0067 0.0054
[0.0957] [0.0889]

Multiple Choice FE No Yes
Hall FE No Yes
Pair Controls No Yes

Mean for Counterfactual Neighbors 0.037
Number of Clusters 5
Number of Observations 685,138

Notes: This table demonstrates how the treatments change the likelihood that two paired students provide
identical incorrect answers, focusing on the first exam. The estimates rely on linear probability models.
Column (1) presents the unconditional estimates. Column (2) controls for multiple-choice fixed effects,
hall fixed effects, and two types of pair-specific variables: control variables for gender combinations (a
female-female dummy and a male-male dummy) and controls for high-school grade combinations (grade
indicators for the better and worse student as well as interactions). The specifications define counterfactual
neighbors as pairs of students from the same hall who did not sit next to each other. Wild-cluster-bootstrap
p-values in [brackets].
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B Figures
Figure B1: List of Announcements

List of official announcements to be made before written exam

Announcements
Please read out loud before the exam starts!

1. Bags, folders, etc. need to be set aside such that you cannot access them during the
exam.

2. Smoking is prohibited in the lecture hall.

3. Take care to provide legible handwriting. Unreadable parts will not be marked.

4. Cheating is forbidden and any attempt to deceive will lead to failure of the exam
(i.e., your exam will be graded with a 5.0).

Attempts to deceive are:
(a) if you are not sitting in your assigned seat
(b) if you communicate with your neighbors or copy answers from neighbors
(c) if your cellphone is not switched off
(d) if you possess or use unauthorized materials during the exam

Authorized materials are: non-programmable calculator, dictionary of foreign
words.

Now is your last chance to hand in unauthorized materials. There will be check-ups
during the exams.

5. Please make sure that you received the correct exam materials. Stay in your seats
until the exam has ended. The proctors will collect your answers sheets after the
exam. It is your responsibility to hand in the answer sheets.

6. The examination period starts after we have distributed the examination materials
(i.e., the problem sets). Don’t touch the examination materials until the start of the
exam was announced. Questions concerning the problem sets will not be answered.

7. If you feel sick during the exam, you have to report this immediately. After the
exam, you cannot claim that you were physically incapable of taking the test.

8. Please only use the provided pen to fill in the answer sheet. This facilitates the
automated scanner-based evaluation of the multiple-choice answer sheets. Please
make sure that the pen remains at your work desk after the end of the exam. We
will collect the pens separately from the exam materials.

9. You now have 5 minutes time to complete the first page of the answer sheet. In-
structions how to fill in the multiple-choice answer sheet are provided on the second
page.
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Figure B2: Front Sheet and Honesty Declaration

Front sheet of exam materials in the field experiment 

 

Answer Sheet for Exam in  

„Principles of Economics“ 

 
First Name    Date   

Last Name    Semester   

Matriculation Number    Seat Number   

Field of Study    Room   

Email Address   

 

 

Framed part varied in field experiment: included in Signature, not included in Monitoring and Control 

 

 

 

Declaration  

 

I hereby declare that I will not use unauthorized materials during the exam. Furthermore,  

I declare neither to use unauthorized aid from other participants nor to give unauthorized  

aid to other participants.  

 

 

________________________ 

Signature 
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Figure B3: Responses to a Selected Multiple-Choice Problem in One Lecture Hall

Notes: This figure provides an idea of what kind of data patterns our methods exploit. It visualizes the
spatial pattern of answers to one multiple-choice problem in a selected control-group hall. Each rectangle
represents a student, and the shade of the rectangle indicates the student’s answer. Because each multiple-
choice problem consisted of four statements, there are four different shades of gray in the figure. Many
students who sat next to each other provided identical answers. These correlations could reflect a spatial
pattern of answers resulting from (some) students copying the responses of a direct neighbor. Such cor-
relations could, however, also arise for other, non-cheating related reasons. For example, there could be a
randomly occurring spatial pattern in the smartness of students. To evaluate whether students plagiarized,
we would like to test whether the similarities in neighbors’ answers were higher than in a counterfactual
scenario without any cheating and only randomly occurring similarities. Our tests approximate this unob-
served counterfactual by creating artificial neighbor pairs that were not sitting side by side and, thus, could
not plagiarize.
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Figure B4: Cheating by Treatment Group

A: Control Group B: Signature Treatment
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C: Monitoring Treatment
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Notes: This figure shows the treatment-specific results for our randomization tests. Panel A focuses on the
control group, Panel B on the signature treatment, and Panel C on the monitoring treatment. The vertical
lines represent the test statistic derived from the actual seating arrangement. The bell-shaped curves plot the
mean-centered null distribution based on Epanechnikov kernels. We obtain this distribution by randomly
reassigning students within halls to seats. The reassignment procedures ensures that the counterfactual
pairs do not consist of two students who were actually sitting in the same row. We obtain p ≤ 0.002 for the
control group and the signature treatment, and we find p > 0.999 for the monitoring treatment (two-tailed
tests with Bonferroni correction).
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Figure B5: Alternative Counterfactual: Cheating by Treatment Group

A: Control Group B: Signature Treatment
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C: Monitoring Treatment

-0.03 -0.02 -0.01 0.00 0.01 0.02
Normalized Share of Identical Answers

0
10
20
30
40
50

Ke
rn

el
 D

en
sit

y

Notes: This figure shows the treatment-specific results for our randomization tests. Panel A focuses on the
control group, Panel B on the signature treatment, and Panel C on the monitoring treatment. The vertical
lines represent the test statistic derived from the actual seating arrangement. The bell-shaped curves plot the
mean-centered null distribution based on Epanechnikov kernels. We obtain this distribution by randomly
reassigning students within halls to seats. Now, counterfactual pairs can consist of two students who were
actually sitting in the same row. We obtain p ≤ 0.001 for the control group and the signature treatment,
and we find p > 0.999 for the monitoring treatment (two-tailed tests with Bonferroni correction).
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Figure B7: Spatial Structure of Cheating and Randomization Schemes

A: Randomization within Rooms

A1: Column Front
(Seat: 3)

A2: Diagonal Front
(2,4)
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B: Randomization within Treatments Stylized Seating Plan

B1: Column Front
(Seat: 3)

B2: Diagonal Front
(2,4)
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Notes: This figure serves two purposes. First, it tests the robustness of our results to the randomization
schemes. Panel A randomizes individuals within rooms. Panel B, instead, resamples individuals within
treatments (i.e., also across halls). Both reassignment procedures ensure that the counterfactual pairs do
not consist of two students who were actually sitting in the same row. Second, the figure examines the
spatial structure of cheating. The stylized seating plan helps us to highlight our specifications. The yellow
circle represents a particular student (sitting in seat 8) who can copy answers from her neighbors 1 to 15.
The Figures A1 and B1 assume that the student only copied answers from the student in seat 3. The Figures
A2 and B2 examine front-diagonal cheating (i.e., copying the answer of the students 2 and 4). Each of the
figures reports the average value of the test statistic in the counterfactual distribution after mean centering
(blue circles), the 95% Bonferroni-corrected confidence bands for the counterfactual distributions (blue
spikes), and the empirical value of the relevant test statistic (red circles).
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Figure B9: Alternative Counterfactual: Spatial Structure and Randomization Schemes

A: Randomization within Rooms

A1: Column Front
(Seat: 3)

A2: Diagonal Front
(2,4)
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B: Randomization within Treatments Stylized Seating Plan

B1: Column Front
(Seat: 3)

B2: Diagonal Front
(2,4)

(2,4,11,13)
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Notes: This figure serves two purposes. First, it tests the robustness of our results to the randomization
schemes. Panel A randomizes individuals within rooms. Panel B, instead, resamples individuals within
treatments (i.e., also across halls). Now, counterfactual pairs can consist of two students who were actually
sitting in the same row. Second, the figure examines the spatial structure of cheating. The stylized seating
plan helps us to highlight our specifications. The yellow circle represents a particular student (sitting in
seat 8) who can copy answers from her neighbors 1 to 15. The Figures A1 and B1 assume that the student
only copied answers from the student in seat 3. The Figures A2 and B2 examine front-diagonal cheating
(i.e., copying the answer of the students 2 and 4). Each of the figures reports the average value of the test
statistic in the counterfactual distribution after mean centering (blue circles), the 95% Bonferroni-corrected
confidence bands for the counterfactual distributions (blue spikes), and the empirical value of the relevant
test statistic (red circles).



Figure B10: Grade Heterogeneity: Estimation with Control Variables

A: Identical Answer B: Identical Incorrect Answer C: Identical Correct Answer
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Notes: This figure examines how the students’ ability (proxied by high-school performance) relates to their
cheating behavior (under baseline monitoring). To construct this figure, we use model (2) to estimate
the effect of being a pair of actual neighbors on the probability that two students give identical answers
(Panel A), identical incorrect answers (Panel B), or identical correct answers (Panel C). Model (2) allows
for heterogeneity in the average neighbor effect depending on a pair’s ability composition. Particularly,
the effects are allowed to vary in whether both students of pair p (gray circles), one student of pair p (red
squares), or none of the students of pair p (blue diamond) performed better in high school than the “median
student.” The underlying regressions control for an exam dummy, multiple-choice fixed effects, and lecture-
hall fixed effects. They also add two types of pair-specific variables to our baseline specification: control
variables for gender combinations (a female-female dummy and a male-male dummy) and controls for
high-school grade combinations (grade indicators for the better and worse student as well as interactions).
All specifications derive the 95% confidence bands by a wild-cluster-bootstrap procedure.
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Figure B11: Grade Heterogeneity: Definition of Grade Variables Based on Mean Student

A: Identical Answer B: Identical Incorrect Answer C: Identical Correct Answer
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Notes: This figure examines how the students’ ability (proxied by high-school performance) relates to their
cheating behavior (under baseline monitoring). To construct this figure, we use model (2) to estimate
the effect of being a pair of actual neighbors on the probability that two students give identical answers
(Panel A), identical incorrect answers (Panel B), or identical correct answers (Panel C). Model (2) allows
for heterogeneity in the average neighbor effect depending on a pair’s ability composition. Particularly,
the effects are allowed to vary in whether both students of pair p (gray circles), one student of pair p
(red squares), or none of the students of pair p (blue diamond) performed better in high school than the
“mean student.” All specifications include an exam dummy and derive the 95% confidence bands by a
wild-cluster-bootstrap procedure.
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Figure B12: Grade Heterogeneity under Close Monitoring

A: Identical Answer B: Identical Incorrect Answer C: Identical Correct Answer
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Notes: This figure examines how the students’ ability (proxied by high-school performance) relates to
their cheating behavior (under close monitoring). To construct this figure, we use model (2) to estimate
the effect of being a pair of actual neighbors on the probability that two students give identical answers
(Panel A), identical incorrect answers (Panel B), or identical correct answers (Panel C). Model (2) allows
for heterogeneity in the average neighbor effect depending on a pair’s ability composition. Particularly,
the effects are allowed to vary in whether both students of pair p (gray circles), one student of pair p
(red squares), or none of the students of pair p (blue diamond) performed better in high school than the
“mean student.” All specifications include an exam dummy and derive the 95% confidence bands by a
wild-cluster-bootstrap procedure.
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Figure B13: Shift in the Distribution: Up to Twelve Identical Incorrect Answers

A: Fraction of Pairs with X Identical
Incorrect Answers

B: Neighbor Effect on Fraction
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Notes: This figure shows how cheating shifts the distribution of identical incorrect answers for X = 0 to
X = 12. Panel A depicts the distribution of identical incorrect answers for counterfactual neighbor pairs
(solid red line) and actual neighbor pairs (dashed blue line). Panel B shows the corresponding neighbor
effects, which are the X -specific differences between the actual and counterfactual distribution shown in
Panel A. To construct the 95% confidence bands in Panel B, we estimate the model described in Footnote
24 and employ our standard wild-cluster-bootstrap procedure.
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Figure B14: Shift in Fraction of Pairs with More Than X ∗ Identical Incorrect Answers

A: Fraction of Pairs with at Least X ∗

Identical Incorrect Answers
B: Total Neighbor Effect on Fraction with
at Least X ∗ Identical Incorrect Answers
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Notes: This figure shows how cheating shifts the fraction of pairs with more than X ∗ identical incorrect
answers. The solid red line in Panel A depicts the fraction for counterfactual neighbor pairs as a function of
X ∗:
∑30

X=X ∗
ef X . The dashed blue line shows the corresponding fraction for actual neighbor pairs:

∑30
X=X ∗ f X .

Panel B shows the corresponding aggregate average neighbor effects,
∑30

X=X ∗ ( f
X− ef X ). Under our standard

identifying assumptions, the aggregated neighbor effects identify a particular subset of cheating pairs: the
fraction of actual neighbors that increase their number of identical incorrect answers from less than X ∗

answers (without cheating) to X ∗ or more answers (with cheating). To construct the 95% confidence bands
in Panel B, we estimate an adjusted version of the model described in Footnote 24. The model regresses
dummies indicating if two students of a pair p gave at least X ∗ identical incorrect answers on a dummy for
actual neighbors. We then employ our standard wild-cluster-bootstrap procedure to derive the confidence
bands.
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Figure B15: Shift in the Distribution of Identical Incorrect Answers by Treatment

A: Control Group B: Signature Treatment C: Monitoring Treatment
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Notes: This figure shows how cheating shifts the distribution of identical incorrect answers. Panel A focuses
on the control group. It depicts the distribution of identical incorrect answers for counterfactual neighbor
pairs (solid red line) and actual neighbor pairs (dashed blue line). Panel B presents a similar graph for the
signature treatment and Panel C focuses on the monitoring treatment.
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Figure B16: Treatment Heterogeneity in the AN E: All Identical Answers

A: Unconditional Estimates B: All Control Variables
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Notes: This figure shows the average neighbor effect on identical (correct and incorrect) answers for the
control group (gray circles), the signature treatment (red squares), and the monitoring treatment (blue di-
amonds). To construct this figure, we estimate model (3) and, based on this model, predict the treatment-
specific neighbor effects. Panel A presents the unconditional estimates. Panel B adds the complete set
of control variables to the model. These control variables include multiple-choice fixed effects, control
variables for gender combinations (a female-female dummy and a male-male dummy), and control vari-
ables for high-school grade combinations (grade indicators for the better and worse student as well as
interactions). All specifications also include an exam dummy and derive the 95% confidence bands by a
wild-cluster-bootstrap procedure.
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C Lower Bound for the Share of Cheating Pairs

In the following, we discuss in more detail how we estimate a lower bound for the share

of actual neighbor pairs that plagiarized. Our lower bound stems from comparing the

distributions of identical incorrect answers for actual and counterfactual pairs.

Transition Matrix. To demonstrate why such a comparison is insightful, Figure C1

sketches a transition matrix that shows the behavior of pairs when they can and can-

not cheat. For simplicity, the transition matrix considers a simplified case with only four

(instead of thirty) multiple-choice problems. The rows reflect the number of identical an-

swers in the (unobserved) counterfactual scenario (in which students cannot cheat); by

contrast, the columns refer to the number of identical answers in the (observed) scenario

in which the students can cheat. Moreover, the elements of the matrix represent fractions

of pairs. Particularly, the value f(c,p) denotes the fraction of pairs that share c identical

incorrect answers in the counterfactual scenario without plagiarism but p identical incor-

rect answers in the scenario with plagiarism. For example, f(0,1) is the fraction of pairs

that share one incorrect answer when plagiarism is possible and otherwise zero answers.

Figure C1: Transition Matrix
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Several details of the transition matrix are worth noting. First, the squares on the

diagonal (marked in green) refer to pairs of students who do not cheat (they share the

same number of answers in both scenarios). Therefore, the share of pairs that do not

cheat corresponds to the sum of the elements on the main diagonal f(0,0) to f(4,4). Second,

the above-diagonal squares (marked in red) refer to cheating pairs. For these students,

the number of identical incorrect answers is higher when they can than when they can-

not cheat. Consequently, the share of cheating pairs corresponds to the sum over the
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above-diagonal elements. Third, there are no pairs that share more identical incorrect

answers when they cannot than when they can cheat (the below-diagonal elements are

empty). This is true if our identifying assumption strictly holds. To see this, recap that the

identifying assumption states that plagiarism is the only systematic reason why the simi-

larity in actual and counterfactual neighbors differs.35 By definition, plagiarism increases

the similarity in the students’ answers. Consequently, there are no pairs that share more

incorrect answers when they cannot than when they can cheat.

Goal. Our goal is to estimate the sum over the above-diagonal elements (i.e., the share

of cheaters). We propose two strategies. This Appendix presents a strategy that estimates

a lower bound for the share of cheaters. To that end, we compare the distribution of

identical incorrect answers for actual neighbors and the estimated distribution of coun-

terfactual neighbors. Appendix D, instead, aims at more directly estimating the share of

cheaters.

Observable Entities. Empirically, we do not directly observe all the elements of the

transition matrix, which complicates the estimation for the share of cheaters. For example,

we do not know how many pairs would increase their identical incorrect answers from

zero to one when they can cheat. However, we can observe or estimate several entities that

allow us to estimate a lower bound for the share of cheaters. First, we directly observe f X ,

the fraction of actual neighbors who share X incorrect answers when they can cheat. In

the transition matrix, f X is the column sum for column X .36 Second, using the empirical

approach described in Section 3.2, we are also able to estimate f̃ X , the fraction of pairs

sharing X incorrect answers in the scenario without cheating. This estimate approximates

the row sum for row X . Third, given that we know f X and f̃ X , we can estimate the

neighbor effect on the distribution at value X :

N EDX = f X − f̃ X . (4)

Fourth, we are able to approximate the total aggregated neighbor effect for X ≥ X ∗:

T N EX ∗ =
∑

X=X ∗
( f X − ef X ). (5)

As discussed in the following, the total aggregated neighbor effect translates into our

lower bound estimate. To demonstrate why, we next discuss its interpretation.

35Unsystematic (random) differences would not bias our estimates.
36For example, the fraction of pairs that share one identical answer without cheating, f 1, consists of two

types of pairs: honest students (they share one answer in both scenarios) and cheaters (they share zero
answers when they cannot but one answer when they can cheat). Put differently, we have f 1 = f(0,1)+ f(1,1).
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Interpretation of the Total Aggregated Neighbor Effect. The total aggregated neigh-

bor effect, T N EX ∗ , can be interpreted as a quantity that identifies a particular subset

of cheating pairs: the share of neighbors that increase their number of identical incor-

rect answers from less than X ∗ answers (without cheating) to X ∗ or more answers (with

cheating). This can be demonstrated mathematically. Consider, for example, the total ag-

gregated neighbor effect T N E1 for the simplified case with four multiple-choice problems

demonstrated in Figure C1. Formally, we have:

T N E1 = ( f 1 − f̃ 1) + ( f 2 − f̃ 2) + ( f 3 − f̃ 3) + ( f 4 − f̃ 4). (6)

By plugging the definitions for f 1 to f 4 and f̃ 1 to f̃ 4 into equation (6)37 and by rearranging

terms, we can derive the expression:

T N E1 = f(0,1) + f(0,2) + f(0,3) + f(0,4).

This equation demonstrates that T N E1 identifies the aforementioned subset of cheating

pairs: it measures the share of pairs that share zero incorrect answers when they cannot

plagiarize but one, two, three, or four similar incorrect answers when they can cheat

(see also Figure C1). Put differently, T N E1 corresponds to the share of neighbors that

(by cheating) increase their number of identical incorrect answers from less than X ∗ = 1

answers (without cheating) to X ∗ = 1 or more answers (with cheating).

We can also calculate the total aggregated neighbor effects T N E2, T N E3, and T N E4:

T N E2 = f(0,2) + f(1,2) + f(0,3) + f(1,3) + f(0,4) + f(1,4),

T N E3 = f(0,3) + f(1,3) + f(2,3) + f(0,4) + f(1,4) + f(2,4),

T N E4 = f(0,4) + f(1,4) + f(2,4) + f(3,4).

Again, the same interpretation applies. Moreover, we can generalize the argument to the

more general case with thirty multiple-choice problems.

Estimating a Lower Bound. Building on the previously discussed insights, our proce-

dure to estimate a lower bound for the share of cheaters proceeds in two steps. First, we

estimate the set of total aggregated neighbor effects T N E = {T N E1, T N E2, ..., T N E29}.
The estimates rely on our identifying assumption, stating that plagiarism is the only sys-

tematic reason why the similarity in the answers of actual neighbors differs from that

37The definitions are (see Figure C1): f 1 = f(0,1) + f(1,1), f 2 = f(0,2) + f(1,2) + f(2,2), f 3 = f(0,3) + f(1,3) +
f(2,3)+ f(3,3), f 4 = f(0,4)+ f(1,4)+ f(2,4)+ f(3,4)+ f(4,4), f̃ 1 = f(1,1)+ f(1,2)+ f(1,3)+ f(1,4), f̃ 2 = f(2,2)+ f(2,3)+ f(2,4),
f̃ 3 = f(3,3) + f(3,4), and f̃ 4 = f(4,4).
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in the answers of counterfactual neighbors.38 Second, our lower bound for the share of

cheaters corresponds the total aggregated neighbor effect T N EX ∗ that maximizes T N E.

In a nutshell, we, hence, determine various different subset of cheating pairs: those

that share more than zero identical incorrect answers with cheating, those that share

more than one identical incorrect answers without cheating, and so on. The lower bound

estimate for the share of cheating pairs is then given by the largest of these subsets. This

strategy allows us to maximize the share of cheating pairs identifiable based on our dis-

tributional analysis.

Results. Empirically, we find that the total aggregated neighbor effect for X ∗ = 2 is

the greatest. Hence, we conclude that the largest (identifiable) group of cheating pairs

consists of those pairs that increase their identical incorrect answers from less than two

to two or more.

Limitation. The main limitation of our distribution-based analysis is that we are only

able to estimate lower bounds. The reason is that the distributions do not reveal each

pair’s position in the transition matrix. Thus, based on distributions, we can neither iden-

tify the elements of the transition matrix nor the share of cheaters. Instead, as discussed,

the total aggregated neighbor effects only identify subsets of cheaters. Appendix D ad-

dresses this limitation. It proposes a method that allows us to identify cheating at the pair

level.

38If this assumption holds, the estimated counterfactual distribution approximates the real counterfactual
distribution in the absence of cheating. In this case, the total aggregated neighbor effects are also identified.
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D Share of Cheaters: Alternative Test

Method. The distributional analysis cannot identify cheating at the pair level. However,

we can alternatively measure the share of cheaters by extending the randomization tests

to the pair level. The extended testing algorithm consists of four steps:

1. Calculate the test statistic as the share of all multiple-choice problems, bsi, j, that an

examinee i and a neighbor j in the same row r answered identically.

2. Calculate the share of all multiple-choice problems bsi,m=1 that the examinee i shares

with a counterfactual neighbor m = 1 who was sitting in the same hall but not in

the same row.

3. Repeat the second step for all the other counterfactual neighbors m= 2, ..., M who

were sitting in the same hall but not the same row. This generates a distribution of

bsi,m with m= 1, ..., M values, mean bµ
bs, and standard deviation bσ

bs. This distribution

corresponds to the distribution of the test statistic under the null hypothesis of no

cheating by i and j.

4. Calculate the p-value as the probability that a draw from this distribution exceeds

the test statistic bsi, j.

This approach, hence, allows to test against the null hypothesis that i does not share more

identical answers with j than with the counterfactual neighbors.

Calculating the Share of Cheaters. A naive approach would then calculate the share of

cheaters as the share of tests that reject the null hypothesis of no cheating at a preferred

significance level (e.g., 5%). However, due to multiple testing, this strategy would over-

estimate the share of cheaters due to false positives. We, therefore, apply the Benjamini

and Hochberg (1995) procedure such to control the false-discovery rate to the same level

as the significance level (e.g., 5%).39 For example, when setting the level to 5%, we en-

sure that no more than 5% of all the cases in which we reject the null hypothesis are a

false discovery.

Results. We calculate the share of cheaters for multiple specifications. First, we bound

the false-discovery rate to 5% and apply the testing procedure to identical (correct and

incorrect) answers. Second, we restrict the rate to 1% and consider the same outcome.

For both of these two specifications, we identify 8.0% of all pairs as cheaters. Third,

we consider identical incorrect answers instead of all identical answers and, again, apply

39Note that the false-discovery rate and the false-positive rate are two different concept. The false-positive
rate measures the probability of falsely rejecting the null hypothesis. Hence, it reflects the ratio between
false positives to the total number of actual negative test results. By contrast, the false-discovery rate is the
ratio of the number of false positives to the number of actual positive test results.
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both false-discovery rates. In this case, we find a slight increase in the share of cheaters to

9.2%. This result is in line with our previous observation that identical incorrect answers

contain more precise traces of cheating. We conclude that the results are fairly in line

with our lower-bound estimate.
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E Suggestive Evidence on Channels

This Appendix presents evidence on potential channels through which the honesty decla-

ration might have increased cheating. Particularly, as discussed and motivated in the main

body of the paper, we study if the declaration shifted the students’ (a) perceived sanction,

(b) perceived detection probability, and (c) perceived descriptive norms of academic in-

tegrity. However, providing evidence on these channels is particularly difficult. Not only

is cheating in exams a type of behavior that is, in principle, difficult to measure, but also

the individuals’ perceptions are, by nature, unobservable. Besides, the institutional en-

vironment of university exams limits our options to collect data. Given these limitations

(discussed in more detail below), we consider the evidence as being suggestive rather

than entirely conclusive.

E.1 Experimental Design

We designed an entirely new follow-up experiment that allows us to collect descriptive

evidence on the effects of honesty declarations on perceptions. The basic idea of this

experiment was to study how an honesty declaration (that students signed before an

exam) affected the students self-reported perceptions in a post-exam survey. We, hence,

followed the standard approach in the literature and tackled the measurement issue of

perceptions with the use of survey techniques.

Signature Treatment and Control Group: Details. We implemented our follow-up ex-

periment in the first exam (principles of economics). As in the initial experiment, the

follow-up experiment evenly split the examinees into a control group and a signature

treatment. Furthermore, the signature treatment implemented an honesty declaration

that was identical to the one in the initial experiment. However, in contrast to the initial

experiment, we randomly assigned the treatment status within the lecture halls. There-

fore, not all the students in one hall did receive the same treatment. Instead, some stu-

dents were in the control group and others in the signature treatment.40 The paragraph

“Why Follow-Up Experiments?” motivates and discusses this design element in more de-

tail.
40To prevent spillovers as much as possible, we kept the layout of the cover sheet of the exam materials

identical between the signature treatment and the control group. Particularly, instead of the honesty decla-
ration, the control group’s cover sheet contained a text of equal length with technical information on how
to handle the exam materials (see Figure E1). As a result, the exam materials looked very similar in both
groups. Note that such spillovers would most likely equalize the outcomes between both conditions and,
hence, would tend to downward-bias the estimated effect of the request on students’ survey responses.
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Figure E1: Front Sheets and Honesty Declaration: Follow-up Experiment
  

Front sheet of exam
 m

aterials in the field experim
ent before survey: 

TREATM
EN

T G
RO

U
P 

Answ
er Sheet for Exam

 

Principles of Econom
ics 

 

 I hereby declare that I w
ill not use unauthorized m

aterials during the exam
. Furtherm

ore, 
I declare neither to use unauthorized aid from

 other participants nor to give unauthorized 
aid to other participants. 

 Signature 

 

Please fill in: 

Last N
am

e 
 

Date 
 

First N
am

e 
 

Seat N
um

ber 
 

M
atriculation N

um
ber 

 
Room

 
 

Em
ail Address 

 

 

 

Please carefully read the inform
ation provided on the back page! 

       

 Front sheet of exam
 m

aterials in the field experim
ent before survey: 

CO
N
TRO

L G
RO

U
P 

Answ
er Sheet for Exam

 

Principles of Econom
ics 

 

 Please provide the answ
ers to all problem

s using this answ
er sheet. Answ

ers provided on 
the sheet containing the problem

 sets w
ill not be considered. Please leave the sheets of this 

docum
ent stapled together. 

  Please note! 

 

Please fill in: 

Last N
am

e 
 

Date 
 

First N
am

e 
 

Seat N
um

ber 
 

M
atriculation N

um
ber 

 
Room

 
 

Em
ail Address 

 
 

 

Please carefully read the inform
ation provided on the back page! 

   

pre-filled
pre-filled

Mailing List. We recruited students for the survey through the department’s official

mailing list for academic surveys. Students who sign up for this mailing list frequently
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receive email invitations to participate in academic surveys. Survey participants then usu-

ally get a payoff that is communicated in the invitation email and paid via bank transfer.

Survey. Two hours after the exams, we invited the examinees to participate in an online

survey (via the mailing list). Students who accepted the invitation were redirected to the

welcome page of the online survey. This page informed participants that the survey’s goal

was to measure “how students generally perceive exams at the university.” It also asked

participants to think about their last exam when answering the questions.41 To prevent

that students foresaw our goal to study the impact of the honesty declaration on their

survey responses, we did not refer to the previous exam on principles of economics at any

point during the survey. Furthermore, answering the survey took about five minutes, and

participants received a flat payoff of €3.50.

Table E1: Post-Exam Survey: Questions

Perceived Sanction
S1 & S2: Imagine the supervising staff in your last exam had witnessed how one participant copies
answers from other participants [uses unauthorized materials (like, for instance, a smartphone)]. What
do you think would be the likely consequence for this student?

Perceived Detection Probability
D1 & D2: Think back to your last exam, and imagine 100 participants who try to copy at least one
answer from other participants [use unauthorized materials (like, for instance, a smartphone) to answer
at least one question]. What do you think, how many of those 100 students would have been caught?
Please state a number between 0 and 100.

Descriptive Norm
N1 & N2: Think back to your last exam, and imagine a group of 100 participants. What do you think,
how many of those have copied at least one answer from other participants [used unauthorized materials
(like, for instance, a smartphone) to answer at least one question]? Please state a number between 0
and 100.

N3 & N4: Think back to your last exam, and imagine the supervising staff had left the exam hall for a
few minutes. What do you think, how many of 100 participants would have copied at least one answer
from other participants in the meanwhile [used unauthorized materials (like, for instance, a smartphone)
to answer at least one question in the meanwhile]? Please state a number between 0 and 100.

Notes: This table summarizes how we measure perceptions. Each question has two versions. The first
version (S1, D1, N1, N3) refers to cheating in the form of copying answers from neighbors (italics). The
second version (S2, D2, N2, N4) concerns the use of unauthorized materials (gray text in brackets). To
answer questions S1 and S2, participants select one of the following options: (a) There are no consequences
whatsoever. (b) The student receives a verbal warning. No other consequences apply. (c) The student will
face a hearing before the examination committee. (d) The committee will decide if the student fails the
exam. (e) The student will fail the exam in any case. (f) The student will be relegated from the university.
To answer all the other questions, participants state a number between 0 and 100.

41There was no other exam scheduled for freshmen students within two days after the exam in principles
in economics.
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Survey Questions: Details. Table E1 summarizes the survey questions. First, we elicited

the perceived sanction for cheating. Particularly, students indicated their belief about the

usual sanction for cheating (they choose one sanction out of a list of five). Second, we

measured the perceived detection probability. To that end, we elicited beliefs about how

many out of 100 cheating students would have been caught in their last exam. Third, to

obtain a measure for descriptive norms, we included several questions in the question-

naire on the subjects’ beliefs about the percentage of peers who cheated in the last exam.

Each question came in two versions. The first version referred to cheating in the form

of copying answers from neighbors and the second to the use of unauthorized materials

like, for example, a mobile phone.

Table E2: Post-Exam Survey: Balancing Checks

Control Signature Difference
(1) (2) (3)

A: Balancing Checks for Students Who Took the Exam
Gender (Female = 1) 0.51 0.50 0.02

(0.03)
High-School GPA 2.57 2.55 0.02

(0.04)
Math Proficiency 2.73 2.63 0.09

(0.08)
Field of Study (Econ. & Sociology = 1) 0.12 0.11 0.01

(0.02)
Age 21.2 21.4 -0.23

(0.18)
Bavaria 0.90 0.92 -0.02

(0.02)
Number of Observations 535 525

B: Balancing Checks for Students Who Participated in the Survey
Gender (Female = 1) 0.45 0.52 -0.07

(0.10)
High-School GPA 2.47 2.30 0.17

(0.12)
Math Proficiency 2.55 2.41 0.14

(0.24)
Field of Study (Econ. & Sociology = 1) 0.07 0.10 -0.03

(0.06)
Age 21.0 21.1 -0.06

(0.47)
Bavaria 0.89 0.90 -0.00

(0.06)
Number of Observations 55 48

Notes: This table shows balancing checks. It reports mean values of the covariates separately for the
control group (Column (1)) and the signature treatment (Column (2)). Moreover, Column (3) shows
the difference in the mean values between the signature treatment and the control group with standard
errors in parentheses. Panel A focuses on the sample of students participating in the repetition of the field
experiment. Panel B considers the sample of individuals who participated in post-exam survey.
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Sample: Details. We focused on two cohorts of students who took the exam on prin-

ciples of economics in two years after our initial experiment.42 In total, the two cohorts

consisted of 1060 students of which 233 signed up for the mailing list before the exam. Ul-

timately, 103 students completed the survey. Panel A in Table E2 shows that the signature

treatment and the control group are balanced in observable characteristics. Moreover,

the 103 survey participants have similar observable characteristics as non-participants

(see Table E3). The only significant sample imbalance is that participants have high-

school GPAs which are 0.19 grade points (or 0.31 standard deviations) better than non-

participants.43 Furthermore, in the sample of survey participants, the signature treatment

(N = 48) and the control group (N = 55) are well-balanced in all the observable charac-

teristics (see Panel B in Table E2).

Table E3: Post-Exam Survey: Characteristics of Participants and Non-Participants

Non-Participants Participants Difference
(1) (2) (3)

Gender (Female = 1) 0.51 0.49 0.02
(0.05)

High-School GPA 2.58 2.39 0.19
(0.06)

Math Proficiency 2.70 2.51 0.19
(0.13)

Field of Study (Econ. & Sociology = 1) 0.12 0.09 0.03
(0.03)

Age 21.3 21.1 0.22
(0.30)

Bavaria 0.91 0.90 0.02
(0.03)

Number of Observations 957 103

Notes: This table shows characteristics of participants and non-participants in the post-exam online survey.
Column (3) shows the difference in means between non-participants and participants with standard errors
in parentheses. Math proficiency is only available for 692 out of the 957 Non-participants and 83 out of
103 Participants.

Why Follow-Up Experiments? One may wonder why we needed to implement follow-

up experiments to study channels. The reason is that two complications forbid us to

analyze channels in our initial experiment. First, due to local exam regulations, we were

not allowed to ask survey questions during the exam. After we implemented our ini-

tial experiment, the department of economics, however, established the aforementioned

mailing list for academic surveys. This newly established survey allowed us to invite stu-

dents who took part in the follow-up experiment to our online survey. Second, the fact

42The reason why we focused on two cohorts was statistical power. As in the original field experiment,
we excluded students who had failed the exam previously and were not taking the exam for the first time.

43To probe the robustness of the survey evidence regarding this type of sample imbalance, we also esti-
mated models that reweigh the individual observations such that the first moments of all characteristics are
identical to the population estimates. The results are virtually unchanged to those reported subsequently.
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that we had to survey students after the exam complicated identification. This holds es-

pecially in our initial experiment that randomized the treatments across lecture halls. To

understand the potential issue of such a design, consider, for example, perceived norms as

a channel. If the signature treatment increased cheating, post-exam questions on norms

may reflect that students in the signature-treatment halls observe more cheating than stu-

dents in control-group halls, instead of reflecting shifts in the perceived norm. This would

lead us to overestimate the effect of the request on perceived norms. To tackle this issue,

we adjusted the sampling scheme and, as previously mentioned, randomly assigned the

signature treatment within lecture halls. This design element ensures that, on average,

students in both groups experienced the same level of cheating by peers.

Drawbacks. Our design has two drawbacks. First, one obvious limitation is the limited

sample size. Not all students signed up for the mailing list, and survey participation

conditional on being registered is voluntary. Second, our design forbids us to reestimate

the effect of the request to sign the honesty declaration on cheating. The reason is that

the treatment status differs between neighbors. Similarities in their answers, thus, reflect

a mix of cheating in both conditions.

E.2 Results

Perceived Sanction. We first analyze impacts on the perceived sanctions for copying

answers or using unauthorized materials. Our first result is that independent of the treat-

ment, a vast majority of students correctly indicated that cheaters would fail the exam

(copying answers: 71.8%; unauthorized materials: 84.5%). Moreover, Table E4 shows

no systematic differences in the perceived sanctions between the signature treatment and

the control group. Using Fisher’s exact tests, we cannot reject the null hypothesis that

the signature treatment did not affect the distribution of answers. Hence, we do not find

evidence that the honesty declaration affected perceived sanctions.

Perceived Detection Probability. Next, we study the effects of the honesty declaration

on the perceived detection probability. To that end, we use the students’ answers to ques-

tions D1 and D2 (see Table E1) as outcome variables of the model:

Yih = γ0 + γSSih + X ihγX +πh + uih, (7)

where Yih is the stated perception of student i seated in hall h, Sih is an indicator for the

signature treatment, X ih is a vector of student controls (age, gender, and high-school GPA),

andπh absorbs exam-hall fixed effects. Regarding inference, we provide heteroscedasticity-
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Table E4: Post-Exam Survey: Perceived Sanctions

Perceived Sanction: Perceived Sanction:
Copying Unauthorized Materials

Control Signature Control Signature
(1) (2) (3) (4)

No sanction at all 0.0 0.0 0.0 0.0
Verbal warning 7.3 16.7 3.6 2.1
Exam committee hears case and decides 20.0 10.4 10.9 10.4
Student fails exam 72.7 70.8 85.5 83.3
Student is expelled from university 0.0 2.1 0.0 4.2
p-value, Fisher’s exact test [0.180] [0.645]
Number of Observations 55 48 55 48

Notes: This table shows students’ expected sanction in case of detected cheating. Particularly, for a list
of potential sanctions, the table reports the treatment-specific shares of participants (in percent) who be-
lieve that one particular sanction will be implemented in case of detection. Columns (1) and (2) focus on
sanctions for copying answers. Columns (3) and (4) focus on sanctions for using unauthorized materials.
We also use Fisher’s exact tests to explore whether the signature treatment affected the distributions of
answers. We report the corresponding p-values [in brackets].

consistent and wild-cluster-bootstrap p-values (17 clusters at the exam hall-level). In

addition to the treatment effects for the individual outcomes, we also report average

standardized effects according to Kling et al. (2004) and Clingingsmith et al. (2009) and

exploit Mann-Whitney-U-Tests to non-parametrically test for treatment differences.

Columns (1) to (3) in Table E5 present the main results. The columns show that the

signature treatment neither shifts the perceived detection probability in case of copying

nor the one in case of using unauthorized materials. Taken together with the fact that the

average student is well informed about the actual sanction, the absence of a significant

treatment effect suggests that the signature treatment did also not significantly shift the

participants’ expected sanction for cheating.

Descriptive Norms To analyze the effects of the signature request on the students’ de-

scriptive norm of academic integrity, we use measures for the participants’ perceived fre-

quency of cheating (see questions N1 and N2) as outcome variables in equation (7). The

point estimates suggest that compared to control-group individuals, students who signed

the honesty declaration believe that four to five additional peers (out of 100) plagiarized

(see Column (4) in Table E5) or used unauthorized materials (see Column (5)). Only

the effect of the outcome “unauthorized materials” is statistically different from zero. If

we jointly exploit variation in both questions, we find a positive and significant average

standardized effect regarding the perceived cheating behavior of other students.

One potential point of skepticism regarding the results on descriptive norms is that

the perceived frequency of cheating in the exam may reflect, to some extent, the per-

ceived sanction instead of the underlying descriptive norm (or the perception regarding
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Table E5: Post-Exam Survey: Treatment Effects

Detection Detection Average % Other % Others Average Social Norm Social Norm Average Average
Probability Probability Stand. Students Using Stand. Copying Unauthorized Stand. Stand.

Copying Unauthorized Effect Copying Unauthorized Effect Materials Effect Effect
Materials (1) & (2) Materials (4) & (5) (7) & (8) (4),(5),(7),(8)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Effect of Signature Treatment -6.0 -2.5 -0.13 4.5 3.6 0.61 14.9 19.9 0.54 0.58
p-value, robust [0.400] [0.727] [0.489] [0.228] [0.010]*** [0.012]** [0.026]** [0.004]*** [0.001]*** [0.001]***
p-value, hall cluster, wild bootstrap [0.364] [0.725] [0.300] [0.021]** [0.052]* [0.017]**
p-value, Mann-Whitney-U-Test [0.686] [0.829] [0.185] [0.041]** [0.053]* [0.029]**
Control Group Mean 31.6 31.4 8.6 3.4 52.2 43.4
Number of Observations 103 103 103 103 103 103

Notes: The table reports the effects of the signature treatment on students’ responses in the post-exam survey. The estimates are derived from OLS regressions
using gender, age, high-school GPA, and exam-hall fixed effects as additional controls. We report the following types of p-values [in brackets]: (a) heteroscedasticity
robust p-values, (b) hall-cluster-robust p-values based on a wild-cluster-bootstrap procedure that accounts for the small number of cluster (Cameron et al., 2008), (c)
p-values for Mann-Whitney-U-Tests, and (d) robust p-values for average standardized effects following Kling et al. (2004) and Clingingsmith et al. (2009). Dependent
variables in Column (1): perceived detection probability (in percent) if copying from a neighbor. Column (2): perceived detection probability (in percent) if using
unauthorized materials (like smartphone, etc). Column (4): perceived share (in percent) of students copying at least one answer. Column (5): perceived share
(in percent) of students using unauthorized materials. Column (7): perceived share of students (in percent) that would copy at least one answer in case of no
supervision. Column (8): perceived share of students (in percent) that would use unauthorized materials in case of no supervision. See the Online Appendix for the
exact wording of the survey questions.
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others’ perception of the sanction). Given the previously reported results on the expected

sanction, this is rather unlikely. However, because this result was unknown when design-

ing the experiment, we responded to this measurement concern by including additional

questions to our survey, which introduce a hypothetical zero-enforcement scenario (see

questions N3 and N4). Column (7) to (9) report the results, again for both cheating tech-

nologies. Compared to Columns (4) and (5), we find a much higher level of perceived

cheating in the control group, indicating that the perceived sanction, indeed, plays a

role. Furthermore, for both outcomes, we confirm that the signature treatment results

in a significant shift towards more (perceived) cheating by other students. The average

standardized effect on perceived cheating in the zero-enforcement scenario in Column

(9) is highly significant. Moreover, Column (10) displays a positive and significant aver-

age standardized effect for all four outcomes, capturing the perceived behavior of other

students.

Summary. In summary, participants who signed the honesty declaration expected more

cheating. In contrast to this result, we do not find any evidence for a shift in the per-

ceived sanctions. Given the already discussed limitations that result from our inability

to observe perceptions directly (limited sample size, measurement issues, spillovers), the

survey evidence cannot ultimately identify the mediating mechanisms. The patterns in

the data, however, suggest that the request to sign the honesty declaration has weakened

the survey participants’ descriptive norms of academic integrity.
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